OpenCV(C++)---模糊图像(二)

1、中值滤波

  • 统计排序滤波器
  • 中值对椒盐噪声有很好的抑制作用

在这里插入图片描述
上图,用中值124替换掉绿色框正中间的150;

  • 了解 最大值滤波 和 最小值滤波
  • 中值模糊相关的API:
 medianBlur(Mat src,Mat dest,ksize)

ksize大小必须大于1而且必须是奇数。

  • 中值模糊的代码实现
#include <opencv2/opencv.hpp>
#include <iostream>

using namespace std;
using namespace cv;

int main(int argc, char** argv) {
	Mat src, dst;
	src = imread("C:/Users/86180/Desktop/文档/学习/opencv/图片处理/zqy4_1.jpg");
	if (!src.data) {
		cout << "could not load image..4." << endl;
		return -1;
	}

	char input_win[] = "input image";
	//原图
	namedWindow(input_win, WINDOW_AUTOSIZE);
	imshow(input_win, src);
    //中值模糊
	medianBlur(src, dst, 3);
	namedWindow("median FIlter Result", WINDOW_AUTOSIZE);
	imshow("median FIlter Result", dst);

	waitKey(0);
	return 0;
}

其运行结果为:
在这里插入图片描述

2、双边滤波

  • 均值模糊无法克服边缘像素信息丢失缺陷。原因是均值滤波是基于平均权重。
  • 高斯滤波部分克服了该缺陷,但是无法完全避免,因为没有考虑像素值的不同。
  • 高斯双边模糊是边缘保留的滤波方法,避免了边缘信息丢失,保留了图像轮廓不变。
  • 双边模糊相关API:
 bilateralFilter(src,dest,d=15,150,3)

其中:
15-计算的半径,半径之内的像素都会被纳入计算,如果d=-1则根据sigma space参数取值
150-sigma color决定多少差值之内的像素会被计算
3-sigma space如果d的值大于0则声明无效,否则根据它来计算d的值

  • 双边模糊的代码实现
#include <opencv2/opencv.hpp>
#include <iostream>

using namespace std;
using namespace cv;

int main(int argc, char** argv) {
	Mat src, dst;
	src = imread("C:/Users/86180/Desktop/文档/学习/opencv/图片处理/zqy4_1.jpg");
	if (!src.data) {
		cout << "could not load image..4." << endl;
		return -1;
	}

	char input_win[] = "input image";
	//原图
	namedWindow(input_win, WINDOW_AUTOSIZE);
	imshow(input_win, src);

	//medianBlur(src, dst, 3);
	//双边模糊
	bilateralFilter(src, dst, 15, 150, 3);
	namedWindow("median FIlter Result", WINDOW_AUTOSIZE);
	imshow("median FIlter Result", dst);

	waitKey(0);
	return 0;
}

其运行结果为:
在这里插入图片描述

  • 如果改成高斯模糊
#include <opencv2/opencv.hpp>
#include <iostream>

using namespace std;
using namespace cv;

int main(int argc, char** argv) {
	Mat src, dst;
	src = imread("C:/Users/86180/Desktop/文档/学习/opencv/图片处理/zqy4_1.jpg");
	if (!src.data) {
		cout << "could not load image..4." << endl;
		return -1;
	}

	char input_win[] = "input image";
	//原图
	namedWindow(input_win, WINDOW_AUTOSIZE);
	imshow(input_win, src);

	//medianBlur(src, dst, 3);
	//双边模糊
	//bilateralFilter(src, dst, 15, 150, 3);
	//namedWindow("median FIlter Result", WINDOW_AUTOSIZE);
	//imshow("median FIlter Result", dst);

	//高斯模糊
	Mat gblur;
	GaussianBlur(src, gblur, Size(15, 15), 3, 3);//高斯模糊
	namedWindow("GaussianBlur Result", WINDOW_AUTOSIZE);
	imshow("GaussianBlur Result", gblur);
	waitKey(0);
	return 0;
}

其运行结果为:
在这里插入图片描述

  • 对双边模糊后的图像进行对比度提高
#include <opencv2/opencv.hpp>
#include <iostream>

using namespace std;
using namespace cv;

int main(int argc, char** argv) {
	Mat src, dst;
	src = imread("C:/Users/86180/Desktop/文档/学习/opencv/图片处理/zqy4_1.jpg");
	if (!src.data) {
		cout << "could not load image..4." << endl;
		return -1;
	}

	char input_win[] = "input image";
	//原图
	namedWindow(input_win, WINDOW_AUTOSIZE);
	imshow(input_win, src);

	//medianBlur(src, dst, 3);
	//双边模糊
	bilateralFilter(src, dst, 15, 150, 3);
	namedWindow("median FIlter Result", WINDOW_AUTOSIZE);
	imshow("median FIlter Result", dst);

	//高斯模糊
	//Mat gblur;
	//GaussianBlur(src, gblur, Size(15, 15), 3, 3);//高斯模糊
	//namedWindow("GaussianBlur Result", WINDOW_AUTOSIZE);
	//imshow("GaussianBlur Result", gblur);

	Mat resultImg;
	Mat kernel = (Mat_<int>(3, 3) << 0, -1, 0, -1, 5, -1, 0, -1, 0);
	filter2D(dst, resultImg, -1, kernel, Point(-1, -1), 0);
	//	filter2D(dst, resultImg, -1, kernel);这样写也没问题
	namedWindow("Final Result", WINDOW_AUTOSIZE);
	imshow("Final Result", resultImg);
	
	waitKey(0);
	return 0;
}

其运行结果为:
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值