1、中值滤波
- 统计排序滤波器
- 中值对椒盐噪声有很好的抑制作用
上图,用中值124替换掉绿色框正中间的150;
- 了解 最大值滤波 和 最小值滤波
- 中值模糊相关的API:
medianBlur(Mat src,Mat dest,ksize);
ksize大小必须大于1而且必须是奇数。
- 中值模糊的代码实现
#include <opencv2/opencv.hpp>
#include <iostream>
using namespace std;
using namespace cv;
int main(int argc, char** argv) {
Mat src, dst;
src = imread("C:/Users/86180/Desktop/文档/学习/opencv/图片处理/zqy4_1.jpg");
if (!src.data) {
cout << "could not load image..4." << endl;
return -1;
}
char input_win[] = "input image";
//原图
namedWindow(input_win, WINDOW_AUTOSIZE);
imshow(input_win, src);
//中值模糊
medianBlur(src, dst, 3);
namedWindow("median FIlter Result", WINDOW_AUTOSIZE);
imshow("median FIlter Result", dst);
waitKey(0);
return 0;
}
其运行结果为:
2、双边滤波
- 均值模糊无法克服边缘像素信息丢失缺陷。原因是均值滤波是基于平均权重。
- 高斯滤波部分克服了该缺陷,但是无法完全避免,因为没有考虑像素值的不同。
- 高斯双边模糊是边缘保留的滤波方法,避免了边缘信息丢失,保留了图像轮廓不变。
- 双边模糊相关API:
bilateralFilter(src,dest,d=15,150,3);
其中:
15-计算的半径,半径之内的像素都会被纳入计算,如果d=-1则根据sigma space参数取值
150-sigma color决定多少差值之内的像素会被计算
3-sigma space如果d的值大于0则声明无效,否则根据它来计算d的值
- 双边模糊的代码实现
#include <opencv2/opencv.hpp>
#include <iostream>
using namespace std;
using namespace cv;
int main(int argc, char** argv) {
Mat src, dst;
src = imread("C:/Users/86180/Desktop/文档/学习/opencv/图片处理/zqy4_1.jpg");
if (!src.data) {
cout << "could not load image..4." << endl;
return -1;
}
char input_win[] = "input image";
//原图
namedWindow(input_win, WINDOW_AUTOSIZE);
imshow(input_win, src);
//medianBlur(src, dst, 3);
//双边模糊
bilateralFilter(src, dst, 15, 150, 3);
namedWindow("median FIlter Result", WINDOW_AUTOSIZE);
imshow("median FIlter Result", dst);
waitKey(0);
return 0;
}
其运行结果为:
- 如果改成高斯模糊:
#include <opencv2/opencv.hpp>
#include <iostream>
using namespace std;
using namespace cv;
int main(int argc, char** argv) {
Mat src, dst;
src = imread("C:/Users/86180/Desktop/文档/学习/opencv/图片处理/zqy4_1.jpg");
if (!src.data) {
cout << "could not load image..4." << endl;
return -1;
}
char input_win[] = "input image";
//原图
namedWindow(input_win, WINDOW_AUTOSIZE);
imshow(input_win, src);
//medianBlur(src, dst, 3);
//双边模糊
//bilateralFilter(src, dst, 15, 150, 3);
//namedWindow("median FIlter Result", WINDOW_AUTOSIZE);
//imshow("median FIlter Result", dst);
//高斯模糊
Mat gblur;
GaussianBlur(src, gblur, Size(15, 15), 3, 3);//高斯模糊
namedWindow("GaussianBlur Result", WINDOW_AUTOSIZE);
imshow("GaussianBlur Result", gblur);
waitKey(0);
return 0;
}
其运行结果为:
- 对双边模糊后的图像进行对比度提高
#include <opencv2/opencv.hpp>
#include <iostream>
using namespace std;
using namespace cv;
int main(int argc, char** argv) {
Mat src, dst;
src = imread("C:/Users/86180/Desktop/文档/学习/opencv/图片处理/zqy4_1.jpg");
if (!src.data) {
cout << "could not load image..4." << endl;
return -1;
}
char input_win[] = "input image";
//原图
namedWindow(input_win, WINDOW_AUTOSIZE);
imshow(input_win, src);
//medianBlur(src, dst, 3);
//双边模糊
bilateralFilter(src, dst, 15, 150, 3);
namedWindow("median FIlter Result", WINDOW_AUTOSIZE);
imshow("median FIlter Result", dst);
//高斯模糊
//Mat gblur;
//GaussianBlur(src, gblur, Size(15, 15), 3, 3);//高斯模糊
//namedWindow("GaussianBlur Result", WINDOW_AUTOSIZE);
//imshow("GaussianBlur Result", gblur);
Mat resultImg;
Mat kernel = (Mat_<int>(3, 3) << 0, -1, 0, -1, 5, -1, 0, -1, 0);
filter2D(dst, resultImg, -1, kernel, Point(-1, -1), 0);
// filter2D(dst, resultImg, -1, kernel);这样写也没问题
namedWindow("Final Result", WINDOW_AUTOSIZE);
imshow("Final Result", resultImg);
waitKey(0);
return 0;
}
其运行结果为: