POJ 2479 Maxmimum sum & 2593 Max Sequence
2479 Maxmimum sum
题目描述
Given a set of n integers: A={a1, a2,…, an}, we define a function d(A) as below:
Your task is to calculate d(A).
输入
The input consists of T(<=30) test cases. The number of test cases (T) is given in the first line of the input.
Each test case contains two lines. The first line is an integer n(2<=n<=50000). The second line contains n integers: a1, a2, …, an. (|ai| <= 10000).There is an empty line after each case.
输出
Print exactly one line for each test case. The line should contain the integer d(A).
2593 Max Sequence
题目描述
Give you N integers a1, a2 … aN (|ai| <=1000, 1 <= i <= N).
You should output S.
输入
The input will consist of several test cases. For each test case, one integer N (2 <= N <= 100000) is given in the first line. Second line contains N integers. The input is terminated by a single line with N = 0.
输出
For each test of the input, print a line containing S.
题目解析
方法一
- 使用for循环将序列分为a[0]-a[i]和a[i+1]-a[n-1]两个部分,针对两个部分分别求最大字段和并相加,最终将和最大的输出。
- 但是这种方法的时间复杂度为O( n 2 n^{2} n2),在OJ上会超时,所以需要寻找时间复杂度更低的方法
方法二
- 通过分析,我们可以发现,前一个子段和可以通过公式得出,后一个子段和可以视为从后往前求子段和,那么这样一来,我们就可以把方法一中利用for循环划分序列的部分删去,使得时间复杂度降低为O(n)
- 我们使用a数组来保存序列,b数组来保存正向子段和,c数组来保存反向子段和
- 在求反向子段和时,使用变量tmp保存到目前为止反向子段和的最大值
- 那么在求反向子段和的for循环中,就可以通过
ans=max(ans,b[i]+tmp);
求得最终结果了(我好像写的并不简单易懂,请看代码和注释吧)
求最大字段和思路
求前i个元素的最大子段和b[i]时,分为两种情况:
- 继承顺延:前i-1个元素的最大字段和b[i-1]加上当前元素a[i],即b[i]=b[i-1]+a[i]
- 另起炉灶:直接使用当前元素a[i]作为前i个元素的最大子段和b[i],即b[i]=a[i]
- 当i=0时,即只有一个元素时,b[i]=a[i]
综上所述,可以得到公式
b
[
i
]
=
{
a
[
i
]
i
=
0
max
{
a
[
i
]
,
b
[
i
−
1
]
+
a
[
i
]
}
i
!
=
0
b[i] = \begin{cases} a[i] & i=0 \\ \max\{ a[i],b[i-1]+a[i] \} & i!=0 \end{cases}
b[i]={a[i]max{a[i],b[i−1]+a[i]}i=0i!=0
AC代码
2479 Maxmimum sum
#include <iostream>
#define INF 0x3f3f3f3f
#define MAX 50000
int a[MAX],b[MAX],c[MAX]; //a保存序列,b保存正向子段和,c保存反向子段和
using namespace std;
int main()
{
int T; //测试数据组数
scanf("%d",&T);
while(T--)
{
int n;
scanf("%d",&n);
for(int i=0;i<=n-1;i++)
{
scanf("%d",&a[i]);
b[i]=c[i]=-INF;
}
int ans=-INF;
b[0]=a[0]; //当子段长度为1时的情况
c[n-1]=a[n-1]; //由于c是反向的,所以不是0,而是n-1
for(int i=1;i<=n-1;i++)
{
b[i]=max(b[i-1]+a[i],a[i]); //求正向子段和
}
int tmp=a[n-1]; //使用tmp保存反向子段和的最大值
for(int i=n-2;i>=0;i--)
{
c[i]=max(c[i+1]+a[i],a[i]); //求反向子段和
tmp=max(tmp,c[i+1]); //更新tmp,使用c[i+1]是为了避免子段重合,详见下一行
ans=max(ans,b[i]+tmp);
//更新ans,此处的b[i]表示0~n-1的最长子段和,tmp表示i+1~n-1的最长子段和,确保不会重合
}
printf("%d\n",ans);
}
return 0;
}
2593 Max Sequence
#include <iostream>
#define INF 0x3f3f3f3f
#define MAX 101000
int a[MAX],b[MAX],c[MAX];
using namespace std;
int main()
{
int n;
while(scanf("%d",&n))
{
if(n==0)
{
break;
}
for(int i=0;i<=n-1;i++)
{
scanf("%d",&a[i]);
b[i]=c[i]=-INF;
}
int ans=-INF;
b[0]=a[0];
c[n-1]=a[n-1];
for(int i=1;i<=n-1;i++)
{
b[i]=max(b[i-1]+a[i],a[i]);
}
int tmp=a[n-1];
for(int i=n-2;i>=0;i--)
{
c[i]=max(c[i+1]+a[i],a[i]);
tmp=max(tmp,c[i+1]);
ans=max(ans,b[i]+tmp);
}
printf("%d\n",ans);
}
return 0;
}
结果
代码AC
注意:
- 需要使用scanf,如果使用cin则会TLE
- 两道题的思路相同,但是输入形式不同,数据范围也不同,一个是50000,一个是100000