线性代数相关理解

1、引言

这段时间,观看了3Blue1Brown大佬的线性代数的本质:【官方双语/合集】线性代数的本质 - 系列合集,感觉有所启发,此处记录一下相关笔记,如有错误之处,还请指出。

2、什么是向量?

向量:具有大小和方向的量,可以形象化地表示为带箭头的现段,箭头所指即向量方向、线段长度即向量大小。在计算机领域,我们通常把一个n维向量表示成一个n×1的矩阵,即
[ a 1 a 2 ⋮ a n ] \begin{bmatrix} a1 \\ a2 \\ \vdots \\ an \\ \end{bmatrix} a1a2an

3、什么是矩阵?

一方面,矩阵表示的是一个基,其中每个列向量表示了对应基向量的方向。

  • 例:矩阵A所表示的是以 从(0,0)到(3,0) 和 从(0,0)到(0,5) 两个向量为基向量的基:
    [ 3 0 0 5 ] \begin{bmatrix} 3 & 0 \\ 0 & 5 \\ \end{bmatrix} [3005]

另一方面,在乘法中,矩阵表示的是一种空间中线性变换的方式,其中每个列向量都表示了对应基向量所进行的线性变换。对矩阵B左乘矩阵A,相当于对A施加了一次矩阵B所进行的线性变换。

  • 例1:原本的基以(1,0),(0,1)为基向量,进行线性变换之后,变成以(1,-2),(3,0)为基向量,所以原基中的(-1,2)在施加了相同的线性变换之后,变换为新基下的(5,2)
    [ 1 3 − 2 0 ] × [ − 1 2 ] = [ 5 2 ] \begin{bmatrix} 1 & 3 \\ -2 & 0 \\ \end{bmatrix}×\begin{bmatrix} -1 \\ 2 \\ \end{bmatrix}=\begin{bmatrix} 5 \\ 2 \\ \end{bmatrix} [1230]×[12]=[52]
  • 例2:我们对基向量继续两次线性变换,此时矩阵乘积的含义是线性变换效果的叠加,这种叠加是有序的(即矩阵乘法不满足交换律)
    [ 1 2 3 4 ] × [ 1 3 2 4 ] = [ 5 11 11 25 ] \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ \end{bmatrix}×\begin{bmatrix} 1 & 3 \\ 2 & 4 \\ \end{bmatrix}=\begin{bmatrix} 5 & 11 \\ 11 & 25 \\ \end{bmatrix} [1324]×[1234]=[5111125]

4、什么是线性表示和秩?

对于一个向量/向量组,如果通过线性操作(矩阵加法、数乘操作),它能够表示n维空间中的所有向量,则称它所张开的空间是n维的,例:

  • 对于一个向量,通过数乘操作,它可以表示它所在直线上的所有向量,我们称它所张开的空间是一维的;
  • 对于由两个二维向量组成的向量组,若这两个向量不共线,通过矩阵加法和数乘操作,它可以表示某个平面内的所有向量,我们称它所张开的空间是二维的;若这两个向量共线,那它只能表示所在直线上的所有向量,所张开的空间是一维的;
  • 更高维的以此类推。

线性表示:对于一个向量组而言,若其中某个向量可被其他向量线性表示,说明它落在了其他向量构成的向量组所张开的空间之中,对于向量组的表示能力(即以向量组为基底的基所能够表示的范围)没有帮助。

:对于一个向量/向量组,它的秩就是它所张开的空间的维数。

  • 若一个三维矩阵的秩是2,说明有向量组有一个向量落在另两个向量所张开的平面中,向量组张开的空间是二维的。

关于非方阵的补充:

  • 对于3×2矩阵,它的几何意义为两个三维空间中的向量所张开的空间,这个空间只能够是平面或直线(共线情况),所以秩最多为2;
  • 对于2×3矩阵,他的几何意义为二维空间中的三个向量所张成的空间,三个向量一定是线性相关的,这个空间只能够是平面或直线(共线情况),所以秩最多为2。

5、什么是逆矩阵A-1

在前面提到过,矩阵的本质是表示线性变换的方式,逆矩阵就是进行逆向的线性变换,例如我们对单位矩阵E施加了矩阵A所代表的线性变换(即AE)后,在施加一个与A相逆向的线性变换(即A-1AE),其结果显然为E,所以有AA-1=A-1A=E。

6、什么是线性方程组A x ⃗ \vec{x} x = v ⃗ \vec{v} v

在线性方程组中,已知了线性变换的方式A,目标向量 v ⃗ \vec{v} v ,需要求得向量 x ⃗ \vec{x} x ,使得 x ⃗ \vec{x} x 施加了A所表示的线性变换之后,与 v ⃗ \vec{v} v 重合,以下分为齐次线性方程组和非齐次线性方程组进行讨论(假设满秩情况下,秩为3):

  1. 齐次线性方程组A x ⃗ \vec{x} x =0
    1)若A为满秩(r(A)=n),只有零向量通过线性变换才能够得到零向量,即只有零解
    2)若A非满秩(r(A)<n),假定r(A)=2, x ⃗ \vec{x} x 经过线性变换之后,其结果将被降维到二维(即落在一个平面上,或向量在该平面上的投影),此时 x ⃗ \vec{x} x 可取值为该平面过原点的法向量方向上的一系列向量,它们的投影都在原点上,即有无穷多解
  2. 非齐次线性方程组A x ⃗ \vec{x} x = b ⃗ \vec{b} b
    1)若A的秩小于 b ⃗ \vec{b} b 的维数(r(A)<r(增广矩阵)),假定r(A)=2,可以想象,任何一个三维向量 x ⃗ \vec{x} x 被施加了A所代表的线性变换之后,都将被降维到二维,不可能与 b ⃗ \vec{b} b 相重合,即无解
    2)若A非满秩,且与 b ⃗ \vec{b} b 的维数相同(r(A)=r(增广矩阵)<n),假定r(A)=2,此时A所张开的空间是一个二维平面, b ⃗ \vec{b} b 处在A所张开的空间之中, x ⃗ \vec{x} x 有无穷多种取值,使其线性变换之后(即在A所张开的平面上做投影)与 b ⃗ \vec{b} b 相重合,即有无穷多解
    3)若A满秩,且与 b ⃗ \vec{b} b 的维数相同(r(A)=r(增广矩阵)),通过对 b ⃗ \vec{b} b 进行逆变换,可求到唯一的 x ⃗ \vec{x} x ,即有唯一解

7、什么是行列式?

在前面提到过,矩阵的本质是表示线性变换的方式,对于以(1,0),(0,1)为基向量的基中的某个区域,经过线性变换之后,这个区域的面积增大/缩小的比例,就是行列式的几何意义,我们以二维空间举例:

  • 以(1,0),(0,1)为基向量的基中,我们圈定一个边长为1的矩形,它的面积为1,我们对基施加如下变换
    [ 2 2 0 2 ] \begin{bmatrix} 2 & 2 \\ 0 & 2 \\ \end{bmatrix} [2022]
    行列式的值为4,而面积也扩大为原本的4倍
    行列式

在数学中有翻转的概念(Orientation),施加线性变换之后,若空间翻转了(对于平面,可以理解为纸张翻页),行列式的值/面积的变化量为负数。

8、什么是特征向量和特征值?

在进行n维空间中的线性变换时,将存在至多n个、至少0个方向上的向量,它们经过变换后,没有方向上的变换(即旋转),只有长度上的改变(即伸缩),这些方向上的向量即为特征向量。
对于某一个特征向量 x ⃗ \vec{x} x ,我们对其施加A所表示的线性变换,即A x ⃗ \vec{x} x ,此时 x ⃗ \vec{x} x 只存在长度上的变化,设变化的比例为λ,这种变化可以用数乘操作来表示,即λ x ⃗ \vec{x} x ,这两种表述是等价的(描述同一种事物——变换后的 x ⃗ \vec{x} x ),即A x ⃗ \vec{x} x x ⃗ \vec{x} x ,这个λ即为特征值。

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值