LeetCode每日一题2/?

该博客介绍了一种使用贪心算法解决糖果分配问题的方法,确保每个孩子在评分较高的情况下获得更多的糖果。通过两次遍历评分数组,从左到右和从右到左更新糖果数量,确保满足题目规则。示例代码展示了如何实现这一策略,并给出了输入输出样例。
摘要由CSDN通过智能技术生成

糖果分配

题目描述:

一群孩子站成一排,每一个孩子有自己的评分。现在需要给这些孩子发糖果,规则是如果一个孩子的评分比自己身旁的一个孩子要高,那么这个孩子就必须得到比身旁孩子更多的糖果;所有孩子至少要有一个糖果。求解最少需要多少个糖果。


输入输出样例

输入是一个数组,表示孩子的评分。输出是最少糖果的数量。

Input: [1,0,2]
Output: 5

在这个样例中,最少的糖果分法是[2,1,2]。


题解:

本题为简单题,采用贪心算法进行两次遍历即可;把所有孩子的糖果数初始化为1;先从左往右遍历一遍,如果右边孩子的评分比左边的高,则右边孩子的糖果数更新为左边孩子的糖果数加1;再从右往左遍历一遍,如果左边孩子的评分比右边的高,且左边孩子当前的糖果数不大于右边孩子的糖果数,则左边孩子的糖果数更新为右边孩子的糖果数加1(若已经大于右边则保持不变)。这里的贪心策略为,在每次遍历中,只考虑并更新相邻一侧的大小关系。

具体代码

#include <iostream>
#include <vector>
#include <algorithm>
#include <numeric>
using namespace std;
class L135 {
public:
    int candy(vector<int>& ratings) {
        //每个孩子的分数数组
        int size = ratings.size();
        if (size < 2) return size;//若只有1个人
        vector<int> num(size, 1);
        for (int i = 0; i < size; i++){
            //从左往右遍历
            if (ratings[i] > ratings[i - 1]) { 
                num[i] = num[i - 1] + 1; 
            }
        }
        for (int i = size - 1; i > -1; i--) {
            //从右往左遍历
            if (ratings[i] < ratings[i - 1]) {
                num[i - 1] = max(num[i - 1], num[i] + 1);
                //可能第一次遍历时就已经大了不止1
            }
        }
        return accumulate(num.begin(), num.end(), 0);
    }
};

c++ vector详解

C++_vector操作

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值