专转本-数学考试大纲

该考试是江苏省理、工、农、经、管专业"专转本"选拔的必考科目,旨在测试考生对大学数学的基本概念、理论和方法的掌握。考试内容涵盖微积分、线性代数等多个方面,包括函数、极限、连续性、一元函数微分学、积分学、多元函数微积分学、无穷级数、常微分方程以及线性代数的知识点。试卷结构为闭卷笔试,总分150分,考试时间120分钟,其中微积分占80%,线性代数占20%。试题包括选择、填空、计算、证明和综合题,难度比例为较易题30%,中等难度题50%,较难题20%。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

《江苏省普通高校“专转本”选拔考试》
高等数学考试大纲

一、考试性质

高等数学是江苏省普通高校“专转本”选拔考试理、工、农、经、管等专业的必考科目,其考试目的是科学、公平、有效地测试考生
在高职(专科)阶段对大学数学的基本概念、重要理论与思想方法的掌握水平,考查考生对大学数学课程的掌握程度。考试的评价标准是理、工、农、经、管等专业高职(专科)优秀毕业生应该达到的水平,以利于各普通本科院校择优选拔,确保招生质量。

二、命题原则

按高职高专院校数学课程的要求命题;同时,兼顾到本科院校对学生数学素养的基本要求。主要考查考生对数学的基本概念、基
本方法、基本思想和基本理论的理解、掌握与运用;重点考查考生的抽象思维能力、逻辑推理能力、空间想象能力、运算能力、综合分析能力和运用数学理论解决实际问题的能力。遵循科学性与公平性原则,不考对某些科类或某些专业明显有利或明显不利的内容。

三、考查内容及要求

第一部分 微积分
(一)函数、极限与连续

【考查内容】
函数的概念及表示法 函数的有界性、单调性、奇偶性和周期性 分段函数、复合函数、反函数和隐函数 基本初等函数和初等
函数 数列极限与函数极限的定义及其性质 函数的左极限和右

  • 2 -
    极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质无穷小量的比较 极限的四则运算 两个重要极限 函数连续的
    定义 函数的间断点及其分类 连续函数的运算性质与初等函数的连续性 闭区间上连续函数的性质
    【考查要求】
    1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系;理解函数的有界性、单调性、奇偶性和周期性。
    2.理解分段函数、复合函数、反函数及隐函数的概念。熟练掌握基本初等函数的性质及其图形,了解初等函数的概念。
    3.理解极限的概念;了解数列极限与函数极限的性质;理解左极限与右极限的概念以及函数极限存在与左、右极限之间的关系。
    4.掌握极限的四则运算法则与复合函数的极限运算法则。
    5.熟练掌握利用两个重要极限求极限的方法。
    6.理解无穷小量与无穷大量的概念,掌握无穷小量的性质;
    了解函数极限与无穷小量的关系,了解无穷小量的比较方法,会熟练运用等价无穷小量求极限。
    7.理解函数连续性的概念
<think>嗯,用户想了解江苏本高等数学的学习方法。首先,我需要确定江苏本的具体考试要求和数学科目的范围。可能包括考试大纲、重点章节、常见题型等。接下来,应该考虑学习方法,比如如何系统复习基础知识,做真题的重要性,时间管理,以及解题技巧。 需要调用搜索工具查找相关信息。比如江苏教育考试院发布的考试大纲,了解考试结构和分值分布。然后,寻找推荐的教材和参考资料,可能涉及同济版高数教材或者机构整理的资料。还要看看有没有考生分享的经验,比如分阶段复习法、错题整理、公式记忆方法等。 整合信息时要注意结构,按照用户的要求分成多个方法或步骤,每个步骤间换行。避免使用第一人称和步骤词汇,所以需要用其他方式组织内容,比如标题或分点。同时,确保引用来源分散在回答中,不集中在末尾。 可能涉及数学公式的格式问题,比如微积分中的导数、积分公式,需要用正确的LaTeX格式。例如,导数的定义式$f'(x)=\lim_{\Delta x \to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}$,积分公式$\int_a^b f(x)dx$等。代码部分可能较少,但如果有计算题的例子,可能需要展示解题步骤的伪代码或Python计算示例,不过用户问题可能更偏向理论方法,代码可能不必要。 最后,生成相关问题时要基于用户的原问题和回答内容,比如考试大纲的获取、备考资料推荐、时间规划等。需要确保三个问题相关且有逻辑关联,帮助用户进一步深入了解。</think>根据江苏本高等数学考试特点及考生经验,学习方法可归纳为以下五个方向: **基础巩固** 建议从考试大纲划定的函数与极限、导数微分、积分学等核心章节入手,系统复习同济版《高等数学》教材基础内容。重要公式如导数定义式$f'(x)=\lim_{\Delta x \to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}$和牛顿-莱布尼茨公式$\int_a^b f(x)dx=F(b)-F(a)$需推导理解而非死记 **真题训练** 近五年真题需反复演练3遍以上,重点分析江苏省教育考试院公布的样卷题型。通过对比2019-2023年真题可发现:定积分应用、微分方程、多元函数微分等章节分值占比稳定在60%以上 **模块化突破** 针对证明题模块,掌握拉格朗日中值定理$\exists \xi \in (a,b),f'(\xi)=\frac{f(b)-f(a)}{b-a}$的应用场景。计算题模块需熟练使用分部积分公式$\int u dv=uv-\int v du$,建立常见积分表 **错题管理系统** 建议使用电子表格统计错题知识点,设置分类标签(概念模糊/计算错误/方法缺失)。对反复出错的微分方程求解题型,可编写解题流程图: ```text 1. 判断方程类型(可分离变量/齐次/线性) 2. 选择对应解法公式 3. 处理积分常数 4. 验证解的正确性 ``` **冲刺策略** 考前30天实施"3+2+1"计划:每天3小时题突破,2小时模拟考试,1小时公式默写。重点记忆泰勒展开式$f(x)=\sum_{n=0}^{\infty}\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n$等高频考点公式
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值