目标检测中的评价指标知识点总结:IOU交叉重叠单元、map/AP/TP/FP/NP的归纳

本文总结了目标检测任务中的评价指标,包括IoU、TP/FP/NP、精度和召回率,以及AP和mAP的概念。通过查准率和查全率的分析,阐述了如何综合评估模型性能。
摘要由CSDN通过智能技术生成

在目标检测任务中,我们时常会让模型一次性生成大量的候选框(candidate bound),然后再根据每一个框的置信度对框进行排序,进而依次计算框与框之间的IoU,以非极大值抑制的方式,来判断到底哪一个是我们真正要找的物体,哪几个又该删除。例如在做人脸检测时,模型输出的可能是左图,而最终我们得到的是右图。
在这里插入图片描述

代码实现

import numpy as np
# box:[上, 左, 下, 右]
box1 = [0,0,8,6]
box2 = [2,3,10,9]

def IoU(box1, box2):
    # 计算中间矩形的宽高
    in_h = min(box1[2], box2[2]) - max(box1[0], box2[0])
    in_w = min(box1[3], box2[3]) - max(box1[1], box2[1])

    # 计算交集、并集面积
    inter = 0 if in_h < 0 or in_w < 0 else in_h * in_w
    union = (box1[2] - box1[0]) * (box1[3] - box1[1]) + \
            (box2[2] - box2[0]) * (box2[
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值