华为OD机试 2025A卷 - 滑动窗口最大和 (100分)

滑动窗口最大和

真题目录: 点击去查看

2025A卷 100分题型

题目描述

有一个N个整数的数组,和一个长度为M的窗口,窗口从数组内的第一个数开始滑动直到窗口不能滑动为止,

每次窗口滑动产生一个窗口和(窗口内所有数的和),求窗口滑动产生的所有窗口和的最大值。

输入描述

  • 第一行输入一个正整数N,表示整数个数。(0<N<100000)
  • 第二行输入N个整数,整数的取值范围为[-100,100]。
  • 第三行输入一个正整数M,M代表窗口的大小,M<=100000,且M<=N。

输出描述

窗口滑动产生所有窗口和的最大值。

用例1

输入

6
10 20 30 15 23 12
3
<
内容概要:《2024年中国城市低空经济发展指数报告》由36氪研究院发布,指出低空经济作为新质生产力的代表,已成为中国经济新的增长点。报告从发展环境、资金投入、创新能力、基础支撑和发展成效五个维度构建了综合指数评价体系,评估了全国重点城市的低空经济发展状况。北京和深圳在总指数中名列前茅,别以91.26和84.53的得领先,展现出强大的资金投入、创新能力和基础支撑。低空经济主要涉及无人、eVTOL(电动垂直起降飞行器)和直升等产品,广泛应用于农业、物流、交通、应急救援等领域。政策支持、市场需求和技术进步共同推动了低空经济的快速发展,预计到2026年市场规模将突破万亿元。 适用人群:对低空经济发展感兴趣的政策制定者、投资者、企业和研究人员。 使用场景及目标:①了解低空经济的定义、类和发展驱动力;②掌握低空经济的主要应用场景和市场规模预测;③评估各城市在低空经济发展中的表现和潜力;④为政策制定、投资决策和企业发展提供参考依据。 其他说明:报告强调了政策监管、产业生态建设和区域融合错位的重要性,提出了加强法律法规建设、人才储备和基础设施建设等建议。低空经济正加速向网络化、智能化、规模化和集聚化方向发展,各地应找准自身比较优势,实现差异化发展。
<think>好的,我现在需要回答用户关于华为OD2025年Python技术要求和考内容的问题。首先,我需要整理现有的信息,但注意到用户提供的引用是关于2024年的。由于2025年的具体要求尚未公布,我需要基于2024年的资料进行合理推测,并提醒用户注意可能的更新。 首先,华为OD通常考察编程能力和算法理解。根据引用[1],2024年的考包括数学问题、数据结构和算法,比如动态规划。Python作为常用语言,可能要求掌握基础语法、数据结构操作、算法实现等。 接下来,我需要确保回答结构清晰,点说明技术要求和考内容,并生成相关问题。同时,必须使用中文,数学公式正确用$或$$包裹,并添加引用标识。需要避免使用Markdown格式,但用户提供的示例中有代码块,可能需要调整格式,但根据系统指令,用户可见层可能需要保持自然的中文描述,代码部可能用文字说明。 然后,思考可能的考内容,比如算法题、数据结构应用、数学问题等,并结合Python的特性,如列表操作、递归、库函数的使用等。同时,要提到可能的优化方法,比如时间复杂度析,因为这在编程题中很重要。 最后,生成相关问题,例如考变化、高频算法题、Python效率优化等,帮助用户进一步探索。确保所有内容符合系统级指令,特别是引用和格式要求。</think>关于华为OD2025年Python技术要求和考内容,目前官方尚未公布明确细节,但可基于2024年的考模式及行业趋势进行合理推测[^1]。以下是关键信息整理: --- ### **一、Python技术要求** 1. **基础语法与数据结构** 需熟练掌握Python基本语法(如条件语句、循环、函数定义)、常用数据结构(列表、字典、集合的操作与性能差异),例如: ```python # 列表推导式示例 squared = [x**2 for x in range(10)] ``` 2. **算法实现能力** 重点考察排序算法(如快速排序、归并排序)、动态规划(如背包问题)、图算法(DFS/BFS)等。例如动态规划求解斐波那契数列: ```python def fib(n): dp = [0, 1] + [0]*(n-1) for i in range(2, n+1): dp[i] = dp[i-1] + dp[i-2] return dp[n] ``` 3. **数学建模与问题转化** 涉及数学公式的应用,例如计算几何问题中的距离公式: $$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$ --- ### **二、考内容预测** 1. **编程题(占比约70%)** 要求编写函数或类解决实际问题,如字符串处理、路径规划等,需注意时间复杂度和边界条件。 2. **数学逻辑题(占比约20%)** 可能涉及概率统计(如排列组合)、方程求解(如线性方程组),例如: 求解方程 $x^2 - 5x + 6 = 0$ 的根。 3. **系统设计题(占比约10%)** 设计小型系统模块(如缓存制、文件解析),需结合Python特性(如生成器、装饰器)。 --- ### **三、备考建议** 1. **算法强化** 重点练习LeetCode中等难度题目(如二叉树遍历、滑动窗口)。 2. **数学基础回顾** 熟悉离散数学、概率论中的常见公式,例如排列数计算: $$A(n, k) = \frac{n!}{(n-k)!}$$ 3. **代码优化技巧** 学习利用Python内置库(如`collections`、`itertools`)提升效率。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无限码力

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值