华为OD机试 2025A卷 - 士兵过河 (200分)

士兵过河

真题目录: 点击去查看

2025A卷 200分题型

题目描述

一支N个士兵的军队正在趁夜色逃亡,途中遇到一条湍急的大河。敌军在T的时长后到达河面,没到过对岸的士兵都会被消灭。现在军队只找到了1只小船,这船最多能同时坐上2个士兵。

  1. 当1个士兵划船过河,用时为 a[i];0 <= i < N
  2. 当2个士兵坐船同时划船过河时,用时为max(a[j],a[i])两士兵中用时最长的。
  3. 当2个士兵坐船1个士兵划船时,用时为 a[i]*10;a[i]为划船士兵用时。
  4. 如果士兵下河游泳,则会被湍急水流直接带走,算作死亡。

请帮忙给出一种解决方案,保证存活的士兵最多,且过河用时最短。

备注

  • 两个士兵的同时划船时,如果划速不同则会导致船原地转圈圈;所以为保持两个士兵划速相同,则需要向划的慢的士兵看齐。
  • 两个士兵坐船时,重量增加吃水加深,水的阻力增大;同样的力量划
【资源说明】 1.项目代码功能经验证ok,确保稳定可靠运行。欢迎下载使用!在使用过程中,如有问题或建议,请及时私信沟通。 2.主要针对各个计算相关专业,包括计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网等领域的在校学生、专业教师或企业员工使用。 3.项目具有丰富的拓展空间,不仅可作为入门进阶,也可直接作为毕设、课程设计、大作业、初期项目立项演示等用途。 4.当然也鼓励大家基于此进行二次开发。 5.期待你能在项目中找到乐趣和灵感,也欢迎你的享和反馈! 本文介绍了基于QEM(Quadric Error Metrics,二次误差度量)的优化网格简化算法的C和C++实现源码及其相关文档。这一算法主要应用于计算图形学领域,用于优化三维模型的多边形数量,使之在保持原有模型特征的前提下实现简化。简化的目的是为了提高渲染速度,减少计算资源消耗,以及便于网络传输等。 本项目的核心是网格简化算法的实现,而QEM作为该算法的核心,是一种衡量简化误差的数学方法。通过计算每个顶点的二次误差矩阵来评估简化操作的误差,并以此来指导网格简化过程。QEM算法因其高效性和准确性在计算图形学中广泛应用,尤其在实时渲染和三维打印领域。 项目代码包含C和C++两种语言版本,这意味着它可以在多种开发环境中运行,增加了其适用范围。对于计算相关专业的学生、教师和行业从业者来说,这个项目提供了丰富的学习和实践会。无论是作为学习编程的入门材料,还是作为深入研究计算图形学的项目,该项目都具有实用价值。 此外,项目包含的论文文档为理解网格简化算法提供了理论基础。论文详细介绍了QEM算法的原理、实施步骤以及与其他算法的对比析。这不仅有助于加深对算法的理解,也为那些希望将算法应用于自己研究领域的人员提供了参考资料。 资源说明文档强调了项目的稳定性和可靠性,并鼓励用户在使用过程中提出问题或建议,以便不断地优化和完善项目。文档还提醒用户注意查看,以获取使用该项目的所有必要信息。 项目的文件名称列表中包含了加水印的论文文档、资源说明文件和实际的项目代码目录,后者位于名为Mesh-Simplification-master的目录下。用户可以将这些资源用于多种教学和研究目的,包括课程设计、毕业设计、项目立项演示等。 这个项目是一个宝贵的资源,它不仅提供了一个成熟的技术实现,而且为进一步的研究和学习提供了坚实的基础。它鼓励用户探索和扩展,以期在计算图形学领域中取得更深入的研究成果。
【资源说明】 1.项目代码功能经验证ok,确保稳定可靠运行。欢迎下载使用!在使用过程中,如有问题或建议,请及时私信沟通。 2.主要针对各个计算相关专业,包括计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网等领域的在校学生、专业教师或企业员工使用。 3.项目具有丰富的拓展空间,不仅可作为入门进阶,也可直接作为毕设、课程设计、大作业、初期项目立项演示等用途。 4.当然也鼓励大家基于此进行二次开发。 5.期待你能在项目中找到乐趣和灵感,也欢迎你的享和反馈! 本文介绍了基于QEM(Quadric Error Metrics,二次误差度量)的优化网格简化算法的C和C++实现源码及其相关文档。这一算法主要应用于计算图形学领域,用于优化三维模型的多边形数量,使之在保持原有模型特征的前提下实现简化。简化的目的是为了提高渲染速度,减少计算资源消耗,以及便于网络传输等。 本项目的核心是网格简化算法的实现,而QEM作为该算法的核心,是一种衡量简化误差的数学方法。通过计算每个顶点的二次误差矩阵来评估简化操作的误差,并以此来指导网格简化过程。QEM算法因其高效性和准确性在计算图形学中广泛应用,尤其在实时渲染和三维打印领域。 项目代码包含C和C++两种语言版本,这意味着它可以在多种开发环境中运行,增加了其适用范围。对于计算相关专业的学生、教师和行业从业者来说,这个项目提供了丰富的学习和实践会。无论是作为学习编程的入门材料,还是作为深入研究计算图形学的项目,该项目都具有实用价值。 此外,项目包含的论文文档为理解网格简化算法提供了理论基础。论文详细介绍了QEM算法的原理、实施步骤以及与其他算法的对比析。这不仅有助于加深对算法的理解,也为那些希望将算法应用于自己研究领域的人员提供了参考资料。 资源说明文档强调了项目的稳定性和可靠性,并鼓励用户在使用过程中提出问题或建议,以便不断地优化和完善项目。文档还提醒用户注意查看,以获取使用该项目的所有必要信息。 项目的文件名称列表中包含了加水印的论文文档、资源说明文件和实际的项目代码目录,后者位于名为Mesh-Simplification-master的目录下。用户可以将这些资源用于多种教学和研究目的,包括课程设计、毕业设计、项目立项演示等。 这个项目是一个宝贵的资源,它不仅提供了一个成熟的技术实现,而且为进一步的研究和学习提供了坚实的基础。它鼓励用户探索和扩展,以期在计算图形学领域中取得更深入的研究成果。
### 华为OD糖果问题的Python解题思路 #### 问题描述 小明从糖果盒中随意抓取一定数量的糖果,每次可以执行三种操作之一:取出一半糖果并舍去余数;如果当前糖果数目为奇数,则可以从盒子中再拿一个糖果或将手里的一个糖果放回去。目标是最少经过几次这样的操作能够使手中的糖果变为一颗。 为了达到这个目的,采用贪心策略来解决问题[^3]。具体来说,在每一步都尽可能快速地减少糖果的数量直到只剩下一颗为止。当遇到奇数个糖果时,优先考虑加一而不是减一,因为这样可以在下一轮更有效地通过除以2的方式大量削减糖果总数。 #### 贪婪算法析 对于任意正整数n表示初始糖果数: - 如果 n 是偶数,则直接将其除以2; - 若 n 为奇数,则判断 (n+1)/2 和 (n−1)/2 的大小关系,选择较小的那个作为下一步的结果,这是因为我们希望更快接近1。 这种做法基于这样一个事实——当我们面对两个连续的奇数值时,较大的那个总是可以通过增加1变成一个小得多的新值(即其半数),而较小的一个则需要两次操作才能完成同样的效果(先减后除)[^4]。 #### Python代码实现 下面给出了解决上述问题的具体Python程序: ```python def min_steps_to_one(n): steps = 0 while n != 1: if n % 2 == 0: n //= 2 elif ((n + 1) // 2) < ((n - 1) // 2): n += 1 else: n -= 1 steps += 1 return steps if __name__ == "__main__": candy_count = int(input().strip()) print(min_steps_to_one(candy_count)) ``` 此函数接收一个参数`n`代表起始的糖果数量,并返回将这些糖果减少到只有一个所需的最小步数。主程序部读入用户输入的数据并调用该方法打印最终结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无限码力

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值