线段树模板(区间修改, 区间求和)

线段树因维护的东西不同而updata和pushdown有很大不同

核心1. 每次更新时候都会直接更新自己,并给自己添加lazy标记,表示左右儿子还没有被更新
核心2, 每次查询时在查询到自己的左右儿子之前就要把自己的lazy标记清除掉,并更新自己的左右儿子
核心3 lazy标记的点代表这个点所代表的区间都要加上lazy[k],
在此处为位数每个区间的和
如果要把1 ~ n区间的元素加10就要把tree[0] 加上10*区间的长度因此updata和pushdown也就有所不同

void add(int k, int l, int r, int num)
{
lazy[k] += num;
tree[k] += (ll)num*(r - l + 1);
}

void pushdown(int t, int l, int r, int mid)
{
add(t<<1, l, mid, lazy[t]);//将t的左二子代表的区间加上他自己的长度乘以lazy[t]
add(t<<1|1, mid + 1, r, lazy[t]);
lazy[t] = 0;//清除标记,维护无论是那种,都要进行
}

#include<cstdio>
#include<iostream>
#include<cstring>
#include<string>
#include<algorithm>
#define N 100005
#define ll long long int
#define lowbit(i) (i & -i)

using namespace std;
ll tree[4 * N], lazy[4 * N], a[4 * N];

void build(int k, int l, int r)//建树操作,各种线段树大致相同
{
    if(l == r)
    {
        tree[k] = a[l];
        return;
    }
    ll mid = l + r >> 1;
    build(k<<1, l, mid);
    build(k<<1|1, mid + 1, r);
    tree[k] = tree[k<<1] + tree[k<<1|1];//因线段树的不同而不同
    //如果为最大值即为 tree[k] = max(tree[k<<1] , tree[k<<1|1])
}
void add(int k, int l, int r, int num)
{
    lazy[k] += num;
    tree[k] += (ll)num*(r - l + 1);
}
void pushdown(int t, int l, int r, int mid)
{
    add(t<<1, l, mid, lazy[t]);
    add(t<<1|1, mid + 1, r, lazy[t]);
    lazy[t] = 0;
}
ll query(int k, int l, int r, int x, int y)
{
    if(x <= l && y >= r)//如果该区间完全为带查询的区间的一部分返回值即可
        return tree[k];
    ll mid = l + r >> 1;
    ll res = 0;
    if(lazy[k])//在查询它的左右儿子前先更新左右儿子,并清除自己lazy标记
        pushdown(k, l, r, mid);
    if(mid >= x) res += query(k << 1, l, mid, x, y);
    if(mid < y) res += query(k<<1|1, mid + 1, r, x, y);
    return res;
}

void update(int t, int l, int r, int x, int y, int num)
{
    if(x <= l && r <= y)
    {
        add(t, l, r, num);//在这里添加标记
        return;
    }
    int mid = (l + r)>>1;
    if(lazy[t])//在更新当前区间时候先清除标记
        pushdown(t, l, r, mid);
    if(x <= mid) update(t<<1, l, mid, x, y, num);
    if(y > mid) update(t<<1|1, mid + 1, r, x, y, num);
    tree[t] = tree[t<<1] + tree[t<<1|1];
}
int main()
{
    ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);//使cout,cin和printf一样
    int n, m, i, j;
    cin>>n>>m;
    for(int i = 1; i <= n; i++) cin >> a[i];
    build(1, 1, n);
    while(m --)
    {
        string s;
        cin>>s;
        int x, y, z;
        if(s == "Q")
        {
            cin>>x>>y;
            cout<<query(1, 1, n, x, y)<<endl;
        }
        else
        {
            cin >> x >> y >> z;
            update(1, 1, n, x, y, z);
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值