手把手Pytorch安装及配置教程(Vscode/Anaconda/CUDA/Pytroch)

按照安装流程一步步将相关软件和环境配置好即可。

一、Vscode安装

Vscode也可以用Pycharm代替,如果使用Pycharm的同学可以跳过一、六节。

  1. 进入VscodeCode官网,选择Download for Windows后等待下载完毕。
    image-20240819155017820
  2. 一路next,添加环境路径那里如果没有自动勾选的话勾选一下。
    image-20240819155144602
  3. Vscode安装完毕,相关配置在最后一节讲。

二、Anaconda安装

  1. 使用国内源来下载Anaconda,这里选择的是2024年版本。image-20240819160352565
  2. 安装Anaconda3,到这步勾选这三个选项。
    image-20240819164129671
  3. 最后一个页面取消勾选这两个选项,至此Anaconda就安装完毕了。
    image-20240819164530500
  4. 配置环境变量,流程如图所示
    image-20240819165414602
  5. 验证Anaconda是否安装成功
    image-20240819165602520
  6. 安装好以后你的电脑会有一个Anaconda Prompt软件,双击打开如图所示,和cmd窗口类似。
    在这里插入图片描述

三、更新显卡驱动

先查看自己的显卡型号,方法:设备管理器 -> 显示适配器
在这里插入图片描述

注意,如果自己的显卡驱动已经更新过了,可以跳过这一节,检查驱动版本方法:Win+r打开cmd,输入nvidia-smi

  1. 进入Nvidia官网,输入自己的显卡型号

image-20240819170037389image-20240819170145014

  1. 更新驱动,这里有几个选项勾选一下
    a. 默认OK
    image-20240819170733524
    b. 选择第二个
    image-20240819170544123
    c. 选择自定义
    image-20240819170850835
  2. 安装完毕后查看显卡驱动:win+r打开cmd -> nvidia-smi,记住这个CUDA的版本12.6,后面安装CUDA的版本要小于等于这个版本
    image-20240819171017473

四、安装CUDA

注意,CUDA的版本小于等于12.6即可,这里我们就安装12.0的吧。

  1. 进入CUDA官网,选择12.0的版本

image-20240819171537045

  1. 根据自己电脑情况选择对应选项,最后选Download
image-20240819171651536
  1. 安装步骤和上述显卡驱动安装步骤一样,默认 -> 自定义,这里有几个可以取消勾选

image-20240819183319105image-20240819183348352

  1. 将图片中的四个路径添加到环境变量中,添加方法见第二节第4小节。
    image-20240819183812171
  2. 检查是否安装成功:cmd窗口中输入:nvcc -V命令
    image-20240819184027912

注意,这里如果是之前一直打开的cmd窗口,输入nvcc -V可能报错,这里要新开一个cmd窗口验证。

五、安装Pytorch

  1. 进入[Pytorch官网](Start Locally | PyTorch),选择下载之前的版本,然后先搁置这个网页,我们先来用Anaconda创建一个虚拟环境。
    image-20240819190513905

  2. 新建虚拟环境。
    ​a. 打开Anaconda Prompt,输入下面一行命令,即创建一个名字为pytorch2.2.2,python版本设置为3.9的虚拟环境。

Conda create -n pytorch2.2.2 python=3.9

​ b. 选择y,等待安装完毕即可。
image-20240819190139029
​ c. 激活虚拟环境,即在Anaconda Prompt中输入下面一行命令,可以看到最前边的括号从base环境变成了pytorch2.2.2环境,接下来我们就要在这个环境中安装Pytorch。

conda activate pytorch2.2.2
image-20240819190311470
  1. 在新的虚拟环境中安装Pytorch,找到对应的命令,因为我们的CUDA是12.0版本,所以这里选择11.8版本的。
    image-20240819190556140
    在Anaconda Prompt中输入上述命令,并选择y
    image-20240819190849973
  2. 验证pytorch是否安装成功,即输入图片中的几个命令:打开python解释器,导入torch库,使用torch.cuda.is_avaiable()看输出是否为True
    image-20240819192237802

六、Vscode配置

  1. 安装中文插件:按图片顺序进行点击安装,安装后重启Vscode
    image-20240819192441125
  2. 安装python插件
    image-20240819192837325
    点击右下角选择解释器路径,就选择我们配置好的虚拟环境即可。
    image-20240819193000359
    至此,我们的Pytorch环境就配置好了。

(选看)Python,Anaconda,Pytorch,CUDA之间的关系

安装完毕后,其实对这些软件之间的关系有一些感觉了,我们有必要了解一下我们安装这些软件和它们之间的关系,这样以后安装就不用看教程了。

  • python:解释器,用来将我们写好的python源文件(程序)进行解释,交给计算机来执行。
  • Pytorch:python的库,也就是别人写好的一些类、方法等,我们可以直接拿来用。
  • CUDA:Nvidia推出的并行计算平台,简单理解就是调用GPU的工具。CUDA允许开发人员使用python,C++等编程语言在GPU上运行程序。
  • Conda:虚拟环境管理工具。Conda可以创建多个虚拟环境,比如一个项目我们需要使用python3.8版本,numpy包,Pytorch2.0版本,另一个项目需要使用python3.9版本,不需要numpy包,Pytorch2.2版本,同一台计算机如何管理呢?Conda就可以创建多个虚拟环境,来管理这些包等。
### 回答1: VSCode是一款非常流行的开发工具,而PyTorch是一个用于深度学习Python库。将这两者结合使用可以提供强大的深度学习开发环境VSCode提供了丰富的功能和插件,使得编码和调试过程更加高效。它具有智能的代码补全、语法高亮和错误检查功能,可以帮助开发者减少拼写错误和语法错误。此外,VSCode还具有强大的调试功能,可以跟踪代码的执行过程并查找错误。 PyTorch是一个用于构建神经网络和进行深度学习的库。它提供了丰富的高级和低级API,使得开发者可以以灵活的方式构建自己的神经网络模型。PyTorch还提供了自动求导功能,可以自动计算梯度并对模型进行优化。 在VSCode中使用PyTorch可以有以下好处: 1. 编写更加高效:VSCode的代码补全功能可以提供PyTorch中函数和类的建议,减少开发者在编写代码时的错误。 2. 调试更加方便:VSCode的调试功能可以帮助开发者在PyTorch模型运行过程中查找错误和调试代码,提高开发效率。 3. 丰富的插件支持:VSCode拥有大量与PyTorch相关的插件,可以增强开发者对深度学习模型的理解和调试能力。 总的来说,使用VSCodePyTorch结合可以提供一个强大的深度学习开发环境,使得编码、调试和优化模型更加高效。 ### 回答2: VSCode是一款非常流行的跨平台代码编辑器,而PyTorch是一个广泛使用的机器学习框架,两者可以很好地结合起来提供代码编辑和深度学习的功能。 首先,作为一个代码编辑器,VSCode提供了丰富的功能和插件生态系统,可以满足开发者的需求。它具有智能代码补全、语法高亮、调试器、版本控制等功能,这些功能对于编写和调试代码非常有帮助。通过VSCode的插件系统,我们可以轻松地安装PyTorch相关的插件,提供对PyTorch代码的语法高亮、代码提示和自动补全等功能,使得编写PyTorch代码更加方便和高效。 其次,VSCode提供了一个交互式的开发环境,可以通过集成的终端运行Python脚本。这意味着我们可以在VSCode中直接运行PyTorch代码,调试和测试模型。VSCode还支持调试功能,可以通过设置断点、单步执行等方式来帮助我们查找和解决代码中的错误。这对于开发和调试深度学习模型非常有帮助,尤其是在调试模型的训练过程中。 另外,VSCode还提供了丰富的扩展库和集成工具,可以进一步增强PyTorch的功能。例如,我们可以使用VSCode的Git集成来管理代码的版本控制,使用远程开发插件在远程服务器上运行PyTorch代码,或者使用VSCode的Jupyter扩展来创建和运行Jupyter笔记本,进一步扩展PyTorch的应用场景。 总结来说,VSCodePyTorch的结合能够提供一个完整且强大的开发环境,帮助开发者更加高效地编写、调试和管理PyTorch代码。无论是初学者还是经验丰富的研究人员,都可以从这个组合中获得便利和效率的提升。 ### 回答3: VSCode是一个非常流行的开源代码编辑器,而PyTorch是一个非常强大的深度学习框架。将它们结合使用可以为深度学习开发提供很多便利。 首先,VSCode提供了丰富的代码编辑功能,如智能代码补全、语法高亮、错误检查等。这些功能可以帮助开发者更快速地编写、调试和修改PyTorch代码,提高开发效率。 其次,VSCode还支持集成调试器。对于PyTorch的开发者来说,这是一个非常重要的功能。通过调试器,我们可以逐行地执行代码,观察变量的值,以及检查函数的执行过程。这对于调试复杂的神经网络模型和处理大量数据时尤其有用。 此外,VSCode还支持各种扩展和插件,可以进一步增强我们的PyTorch开发环境。例如,我们可以安装Python插件,以便在VSCode中运行和调试Python代码。我们还可以安装PyTorch相关的插件,如自动完成PyTorch的函数和类名,显示PyTorch文档等。 最后,VSCode还提供了版本控制的功能。我们可以使用Git等版本控制系统来跟踪、管理和协作开发PyTorch项目。VSCode内置了Git集成,可以方便地进行版本控制操作,如查看提交历史、分支管理等。 总之,使用VSCode来开发PyTorch项目可以提供更好的代码编辑体验、调试工具和版本控制功能。这些功能有助于提高开发效率、减少错误,并更好地管理和协作开发深度学习项目。
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值