随机快排
partition: 已知数组arr中的数num,现要求把小于等于num的数放左边,大于等于num的数放右面,要求额外时间复杂度O(N),额外空间复杂度O(1)
解法:在数组左侧和右侧分别划一个小于区域和一个大于区域,遍历数组,遇到小于num的数cur,就和小于区域相邻位置的数交换,小于区域扩一个位置,cur跳下一位,而遇到大于num的数,则交换完后cur保持原位,继续考察交换 过来的数与num的大小关系,cur走到大于区域,流程结束。
int *partition(int *arr, int l, int r, int num) {
int less = l - 1;
int more = r + 1;
int temp = l;
while (temp < more) {
if (arr[temp] < num)
swap(arr, ++less, temp++);
else if (arr[temp] > num)
swap(arr, --more, temp);
else
temp++;
}
int new[]={less+1,more};
int *pt;
pt=new;
return pt;
随机快排
长期期望复杂度:O(N*logN) 额外空间复杂度:O(logN)
#include <stdio.h>
#include<stdlib.h>
void swap(int *arr, int i, int j) {
int temp;
temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
int *partition_1(int*arr, int l,int r){
int less=l-1;
int more=r;
while(l<more){
if(arr[l]<arr[r])
swap(arr,++less,l++);
else if (arr[l]>arr[r])
swap(arr,--more,l);
else
l++;
}
swap(arr,more,r);
int res[]={less-1,more};
int*pt;
pt=res;
return pt;
}
void quickSort(int *arr, int l,int r){
if(l<r){
swap(arr, l + (int)(rand()%(r-l)), r);//随机选取一个数放到最后
int *p;
p=partition_1(arr,l,r);
quickSort(arr,l,p[0]-1);
quickSort(arr,p[1]+1,r);
}
}
堆排序
满二叉树: 所有非叶节点的叶节点都齐。
完全二叉树:满二叉树是完全二叉树,非满二叉树中的叶节点从左往右没
有空缺,也叫完全二叉树,堆就是完全二叉树。
堆结构: 完全二叉树就是堆结构。
大根堆: 堆的每一个父节点都大于其子节点
把一个数组抽象成一个堆结构:i位置的数,他的父位置在(i-1)/2,他的左 孩子在2i+1,他的右孩子在2i+2.
堆排序:
void heapInsert(int*arr, int index){
while(arr[index]>arr[(index-1)/2]){
swap(arr,index,(index-1)/2);//index与其父位置的数比较,比父位置大就交换
index=(index-1)/2;//从index往上跑
}
}
void heapify(int *arr, int index, int heapSize ){
int left=2*index+1;
while(left<heapSize){
int largest=left+1<heapSize&&arr[left+1]>arr[left]?left+1:left;
largest=arr[largest]>arr[index]?largest:index;
if(largest==index)
break;
swap(arr,largest,index);
index=largest;
left=2*index+1;
}
}
void heapSort(int *arr,int len){//len是数组长度
for(int i=0;i<len;i++)
heapInsert(arr,i);//将数组变为大根堆
int heapSize= len;
swap(arr,0,--heapSize);
while(heapSize>0){
heapify(arr,0,heapSize);//每次找到堆顶是最大值,放到最末
swap(arr,0,--heapSize);
}
}