Hadoop之MapReduce详解

1、MapReduce定义

MapReduce是一个分布式运算程序的编程框架,是用户开发“基于Hadoop的数据分析应用”的核心框架。

MapReduce核心功能是将用户编写的业务逻辑代码和自带默认组件整合成一个完整的分布式运算程序,并发运行在一个Hadoop集群上

2、MapReduce优缺点

1)优点

(1)MapReduce易于编程

它简单的实现一些接口,就可以完成一个分布式程序,这个分布式程序可以分布到大量廉价的PC机器上运行。也就是说你写一个分布式程序,跟写一个简单的串行程序是一模一样的。就是因为这个特点使得MapReduce编程变得非常流行。

(2)良好的扩展性

当你的计算资源不能得到满足的时候,你可以通过简单的增加机器来扩展它的计算能力。

(3)高容错性

MapReduce设计的初衷就是使程序能够部署在廉价的PC机器上,这就要求它具有很高的容错性。比如其中一台机器挂了,它可以把上面的计算任务转移到另外一个节点上运行,不至于这个任务运行失败,而且这个过程不需要人工参与,而完全是由Hadoop内部完成的。

(4)适合PB级以上海量数据的离线处理

可以实现上千台服务器集群并发工作,提供数据处理能力。

2)缺点

(1)不擅长实时计算

MapReduce无法像MySQL一样,在毫秒或者秒级内返回结果。

(2)不擅长流式计算

流式计算的输入数据是动态的,而MapReduce的输入数据集是静态的,不能动态变化。这是因为MapReduce自身的设计特点决定了数据源必须是静态的。

(3)不擅长DAG(有向无环图)计算

多个应用程序存在依赖关系,后一个应用程序的输入为前一个的输出。在这种情况下,MapReduce并不是不能做,而是使用后,每个MapReduce作业的输出结果都会写入到磁盘,会造成大量的磁盘IO,导致性能非常的低下。

3、MapReduce核心思想

在这里插入图片描述

(1)分布式的运算程序往往需要分成至少2个阶段。

(2)第一个阶段的MapTask并发实例,完全并行运行,互不相干。

(3)第二个阶段的ReduceTask并发实例互不相干,但是他们的数据依赖于上一个阶段的所有MapTask并发实例的输出。

(4)MapReduce编程模型只能包含一个Map阶段和一个Reduce阶段,如果用户的业务逻辑非常复杂,那就只能多个MapReduce程序,串行运行。

总结:分析WordCount数据流走向深入理解MapReduce核心思想。

4、MapReduce进程

一个完整的MapReduce程序在分布式运行时有三类实例进程:

(1)MrAppMaster:负责整个程序的过程调度及状态协调。

(2)MapTask:负责Map阶段的整个数据处理流程。

(3)ReduceTask:负责Reduce阶段的整个数据处理流程。

5、官方WordCount源码

采用反编译工具反编译源码,发现WordCount案例有Map类、Reduce类和驱动类。且数据的类型是Hadoop自身封装的序列化类型。

6、常用数据序列化类型

Java类型Hadoop Writable类型
BooleanBooleanWritable
ByteByteWritable
IntIntWritable
FloatFloatWritable
LongLongWritable
DoubleDoubleWritable
StringText
MapMapWritable
ArrayArrayWritable

7、MapReduce编程规范

用户编写的程序分成三个部分:Mapper、Reducer和Driver

1)Mapper阶段

(1)用户自定义的Mapper要继承父类Mapper

(2)Mapper输入的数据是KV键值对形式,类型可自定义

(3)Mapper的业务逻辑写在重写的map方法中

(4)Mapper输出的数据是KV键值对形式,类型可自定义

(5)每个KV调用一次map方法

2)Reducer阶段

(1)用户定义的Reducer要继承父类Reducer

(2)Reducer的输入数据KV类型对应Mapper输出数据KV的类型

(3)Reducer的业务逻辑写在重写的reduce方法中

(4)每个KV调用一次reduce方法

3)Driver阶段

相当于yarn集群的客户端,用于提交整个程序到yarn集群,提交的是封装了mapreduce程序相关运行参数的job对象

8、WordCount案例实操

1)需求

在给定的文本文件中统计输出每一个单词出现的总次数

(1)输入数据

(2)期望输出数据

atguigu 2

banzhang 1

cls 2

hadoop 1

jiao 1

ss 2

xue 1

2)需求分析

按照MapReduce编程规范,分别编写Mapper,Reducer,Driver。
在这里插入图片描述

3)环境准备

(1)创建maven工程

(2)在pom.xml文件中添加如下依赖

<dependencies>
    <dependency>
        <groupId>junit</groupId>
        <artifactId>junit</artifactId>
        <version>4.12</version>
    </dependency>
    <dependency>
        <groupId>org.apache.logging.log4j</groupId>
        <artifactId>log4j-slf4j-impl</artifactId>
        <version>2.12.0</version>
    </dependency>
    <dependency>
        <groupId>org.apache.hadoop</groupId>
        <artifactId>hadoop-client</artifactId>
        <version>3.1.3</version>
    </dependency>
</dependencies>

(3)在项目的src/main/resources目录下,新建一个文件,命名为“log4j2.xml”,在文件中填入。

<?xml version="1.0" encoding="UTF-8"?>

<Configuration status="error" strict="true" name="XMLConfig">
    <Appenders>
        <!-- 类型名为Console,名称为必须属性 -->
        <Appender type="Console" name="STDOUT">
            <!-- 布局为PatternLayout的方式,
            输出样式为[INFO] [2018-01-22 17:34:01][org.test.Console]I'm here -->
            <Layout type="PatternLayout"
                    pattern="[%p] [%d{yyyy-MM-dd HH:mm:ss}][%c{10}]%m%n" />
        </Appender>

 
    </Appenders>

 
    <Loggers>
        <!-- 可加性为false -->
        <Logger name="test" level="info" additivity="false">
            <AppenderRef ref="STDOUT" />
        </Logger>

 
        <!-- root loggerConfig设置 -->
        <Root level="info">
            <AppenderRef ref="STDOUT" />
        </Root>
    </Loggers> 

</Configuration>

4)编写程序

(1)编写Mapper

public class WordCountMapper  extends Mapper<LongWritable, Text,Text,IntWritable> {
    Text k = new Text();
    IntWritable v = new IntWritable(1);

    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
        String line = value.toString();
        String[] words = line.split(" ");
        for (String word : words) {
            k.set(word);
            context.write(k,v);
        }
    }
}

(2)编写Reducer

public class WordCountReducer extends Reducer<Text, IntWritable,Text,IntWritable> {
    int sum=0;
    IntWritable v= new IntWritable();
    @Override
    protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
        for (IntWritable value : values) {
            int i = value.get();
            sum+=i;
        }
        v.set(sum);
        context.write(key,v);
    }
}

(3)编写Driver

public class WordCountDriver {
    public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
        //1.获取配置信息以及job对象
        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf);

        //2.关联本Driver程序的jar
        job.setJarByClass(WordCountDriver.class);

        //3.关联Mapper和Reducer的jar
        job.setMapperClass(WordCountMapper.class);
        job.setReducerClass(WordCountReducer.class);

        //4.设置Mapper输出的KV类型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(IntWritable.class);


        //5.设置最终输出的KV类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);

        //6.设置输入和输出路径
        FileInputFormat.setInputPaths(job,new Path("d:/input/inputbigwords"));
        FileOutputFormat.setOutputPath(job,new Path("d:/Output"));

        //7.提交job
        boolean result = job.waitForCompletion(true);
        System.exit(result ? 0 : 1);
    }
}

5)本地测试

(1)需要首先配置好HADOOP_HOME变量以及Windows运行依赖

(2)在IDEA/Eclipse上运行程序

6)集群上测试

(0)用maven打jar包,需要添加的打包插件依赖(在工程pom文件里添加如下代码,第二个依赖可以用来打包工程里的依赖)

<build>
        <plugins>
            <plugin>
                <artifactId>maven-compiler-plugin</artifactId>
                <version>3.6.1</version>
                <configuration>
                    <source>1.8</source>
                    <target>1.8</target>
                </configuration>
            </plugin>
            <plugin>
                <artifactId>maven-assembly-plugin</artifactId>
                <configuration>
                    <descriptorRefs>
                        <descriptorRef>jar-with-dependencies</descriptorRef>
                    </descriptorRefs>
                </configuration>
                <executions>
                    <execution>
                        <id>make-assembly</id>
                        <phase>package</phase>
                        <goals>
                            <goal>single</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>

注意:如果工程上显示红叉。在项目上右键->maven->Reimport即可。

(1)将程序打成jar包,然后拷贝到Hadoop集群中

步骤详情:右键->Run as->maven install。等待编译完成就会在项目的target文件夹中生成jar包。如果看不到。在项目上右键->Refresh,即可看到。修改不带依赖的jar包名称为wc.jar,并拷贝该jar包到Hadoop集群。

(2)启动Hadoop集群

(3)执行WordCount程序

[atguigu@hadoop102 software]$ hadoop jar  wc.jar

com.atguigu.wordcount.WordcountDriver /user/atguigu/input /user/atguigu/output

7)在Windows上向集群提交任务

(1)添加必要配置信息
public class WordcountDriver {

 	public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {

 
		// 1 获取配置信息以及封装任务
		Configuration configuration = new Configuration();
		
		//设置HDFS NameNode的地址
       configuration.set("fs.defaultFS", "hdfs://hadoop102:9820");

		// 指定MapReduce运行在Yarn上
       configuration.set("mapreduce.framework.name","yarn");

		// 指定mapreduce可以在远程集群运行
       configuration.set("mapreduce.app-submission.cross-platform","true");

		//指定Yarn resourcemanager的位置
       configuration.set("yarn.resourcemanager.hostname","hadoop103");

		Job job = Job.getInstance(configuration);

		// 2 设置jar加载路径
		job.setJarByClass(WordcountDriver.class); 

		// 3 设置map和reduce类
		job.setMapperClass(WordcountMapper.class);
		job.setReducerClass(WordcountReducer.class);

 		// 4 设置map输出
		job.setMapOutputKeyClass(Text.class);
		job.setMapOutputValueClass(IntWritable.class);

 		// 5 设置最终输出kv类型
		job.setOutputKeyClass(Text.class);
		job.setOutputValueClass(IntWritable.class);		

		// 6 设置输入和输出路径
		FileInputFormat.setInputPaths(job, new Path(args[0]));
		FileOutputFormat.setOutputPath(job, new Path(args[1]));

 		// 7 提交
		boolean result = job.waitForCompletion(true);
		System.exit(result ? 0 : 1);
	}
}
(2)编辑任务配置

​ 1)检查第一个参数Main class是不是我们要运行的类的全类名,如果不是的话一定要修改!

​ 2)在VM options后面加上 :-DHADOOP_USER_NAME=atguigu

​ 3)在Program arguments后面加上两个参数分别代表输入输出路径,两个参数之间用空格隔开。如:hdfs://hadoop102:9820/input hdfs://hadoop102:9820/output
在这里插入图片描述

(3)打包,并将Jar包设置到Driver中
public class WordcountDriver {

 
	public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {

 
		// 1 获取配置信息以及封装任务
	   Configuration configuration = new Configuration();
       configuration.set("fs.defaultFS", "hdfs://hadoop102:9820");
       configuration.set("mapreduce.framework.name","yarn");
       configuration.set("mapreduce.app-submission.cross-platform","true");
       configuration.set("yarn.resourcemanager.hostname","hadoop103");

 		Job job = Job.getInstance(configuration);

 		// 2 设置jar加载路径(关键是这里)

//job.setJarByClass(WordCountDriver.class);
		job.setJar("D:\IdeaProjects\mapreduce\target\mapreduce-1.0-SNAPSHOT.jar");

 		// 3 设置map和reduce类
		job.setMapperClass(WordcountMapper.class);
		job.setReducerClass(WordcountReducer.class);

 		// 4 设置map输出
		job.setMapOutputKeyClass(Text.class);
		job.setMapOutputValueClass(IntWritable.class);

 		// 5 设置最终输出kv类型
		job.setOutputKeyClass(Text.class);
		job.setOutputValueClass(IntWritable.class);		

        // 6 设置输入和输出路径
		FileInputFormat.setInputPaths(job, new Path(args[0]));
		FileOutputFormat.setOutputPath(job, new Path(args[1]));

 		// 7 提交
		boolean result = job.waitForCompletion(true);
		System.exit(result ? 0 : 1);
	}
}

b.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);

	// 5 设置最终输出kv类型
	job.setOutputKeyClass(Text.class);
	job.setOutputValueClass(IntWritable.class);		

    // 6 设置输入和输出路径
	FileInputFormat.setInputPaths(job, new Path(args[0]));
	FileOutputFormat.setOutputPath(job, new Path(args[1]));

	// 7 提交
	boolean result = job.waitForCompletion(true);
	System.exit(result ? 0 : 1);
}

}


#### (4)提交并查看结果
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值