食物链
动物王国中有三类动物 A,B,C,这三类动物的食物链构成了有趣的环形。
A 吃 B,B 吃 C,C 吃 A。
现有 N 个动物,以 1∼N 编号。
每个动物都是 A,B,C 中的一种,但是我们并不知道它到底是哪一种。
有人用两种说法对这 N 个动物所构成的食物链关系进行描述:
第一种说法是 1 X Y
,表示 X 和 Y 是同类。
第二种说法是 2 X Y
,表示 X 吃 Y。
此人对 N 个动物,用上述两种说法,一句接一句地说出 K 句话,这 K 句话有的是真的,有的是假的。
当一句话满足下列三条之一时,这句话就是假话,否则就是真话。
- 当前的话与前面的某些真的话冲突,就是假话;
- 当前的话中 X 或 Y 比 N 大,就是假话; 当前的话表示 X 吃 X,就是假话。
- 你的任务是根据给定的 N 和 K 句话,输出假话的总数。
输入格式
第一行是两个整数 N 和 K,以一个空格分隔。
以下 K 行每行是三个正整数 D,X,Y,两数之间用一个空格隔开,其中 D 表示说法的种类。
若 D=1,则表示 X 和 Y 是同类。
若 D=2,则表示 X 吃 Y。
输出格式
只有一个整数,表示假话的数目。
数据范围
1≤N≤50000,
0≤K≤100000
输入样例:
100 7
1 101 1
2 1 2
2 2 3
2 3 3
1 1 3
2 3 1
1 5 5
输出样例:
3
代码:
C++:
#include<bits/stdc++.h>
using namespace std;
const int N = 50010;
int n,k,res;
int p[N],d[N];
/***
p[i]存储着i的父节点
d[i]存储着i节点到根节点距离,距离模3,结果为0表示该节点与根节点为同类,结果为1表示该节点吃根节点,结果为2表示根节点吃该节点。 eg: A-B-C-A-B-C-A-B-C(共有ABC三类物种,根节点为A类,后续每一个节点距离前一个节点的距离为1)
所以,在同一个并查集(树)中的元素,都有固定的关系。
同类:与根节点距离模3结果为0的点都是同类。
捕食关系:与根节点的距离模3的结果相差1表示具有捕食关系。
***/
int find(int x) //获取x的根节点,并且更新距离为到根节点的距离
{
if(x!=p[x])
{
int t = find(p[x]);
d[x] += d[p[x]];
p[x] = find(p[x]);
}
return p[x];
}
int main()
{
cin>>n>>k;
for(int i=1;i<=n;i++) p[i]=i;
while(k--)
{
int q,x,y;
cin>>q>>x>>y;
if(x>n || y>n) res++;
else
{
int px=find(x),py=find(y); //获取x,y的根节点。
if(q==1) //同类关系
{
/***
如果x和y具有相同的根节点,表示x和y已有关系。若x和y距根节点的距离模3为0,则x,y是同类,反之则不是同类。
如果x和y不具有相同的根节点,表示x和y还没有关系,设置x和y为同根节点。
***/
if(px==py && (d[x]-d[y])%3) res++;
else if(px!=py)
{
p[px]=py;
d[px]=d[y]-d[x];
}
}
else
{
if(px==py && (d[x]-d[y]-1)%3) res++;
else if(px!=py)
{
p[px]=py;
d[px]=d[y]-d[x]+1;
}
}
}
}
printf("%d",res);
return 0;
}