本文目录
零,GitHub项目地址
Github项目地址:https://github.com/kaixindelele/ChatPaper
据项目作者的描述,项目的作用是:通过ChatGPT实现对论文进行总结,帮助科研人进行论文初筛。
友情链接:ChatGPT系列
一,ChatGPT系列之——Auto GPT部署教程
二,ChatGPT系列之——中科院AcademicGPT学术优化
一,克隆
在自己想要保存该项目的目录下,右键运行Git Bash Here
输入git clone https://github.com/kaixindelele/ChatPaper.git
命令克隆项目
然后,用记事本打开项目根目录下的 apikey.ini
文件,在如下位置填入自己的 OpenAI Key:
二,创建虚拟环境、安装依赖包
执行以下命令:
conda create -n ChatPaper python=3.9 # 创建虚拟环境
conda activate ChatPaper # 激活虚拟环境
# 以下三步是为了切换到项目目录下
cd /
F:
cd F:\Programming\Git\GitCloneWareHouse\ChatPaper
pip install -r requirements.txt # 安装依赖
创建虚拟环境:
激活虚拟环境并安装依赖(注意依赖包需要安装到虚拟环境中,而不是项目目录下:
三,运行
首先明确一点,本项目是在CMD窗口或者Anaconda Prompt窗口运行的,前提是需要魔法(科学上网),然后在上一步的虚拟环境中,进入到项目目录下,执行以下命令:
1,chat_arxiv.py:Arxiv在线批量搜索+下载+总结
# 精准搜索
python chat_arxiv.py --query "chatgpt robot" --page_num 2 --max_results 3 --days 10
# 模糊搜索
python chat_paper.py --query "chatgpt robot" --filter_keys "chatgpt robot" --max_results 3
注释:query仍然是关键词,page_num是搜索的页面,每页和官网一样,最大是50篇,max_results是最终总结前N篇的文章,days是选最近几天的论文,严格筛选!
注意:注意:搜索词无法识别-
,只能识别空格!所以原标题的连字符最好不要用!
输出论文在pdf_files文件夹下,论文摘要结果在export文件夹下:
2,chat_paper.py:Arxiv在线批量搜索+下载+总结+高级搜索+指定作者
python chat_paper.py --query "ti: Sergey Levine" --filter_keys "reinforcement robot" --max_results 3
3,本地单PDF总结
python chat_paper.py --pdf_path "demo.pdf"
4,本地PDF文件夹总结
python chat_paper.py --pdf_path "your_absolute_path"
5,谷歌学术论文整理
python google_scholar_spider.py --kw "deep learning" --nresults 30 --csvpath "./data" --sortby "cit/year" --plotresults 1
注释:此命令在Google Scholar上搜索与“deep learning”相关的文章,检索30个结果,将结果保存到“./data”文件夹中的CSV文件中,按每年引用次数排序数据,并绘制结果。