1-重新思考后处理的基于搜索的神经方法在解决大规模旅行商问题中的应用(arXiv 2024)(完)


Abstract

最近在解决大规模旅行商问题(TSP)方面的进展采用了热图引导的蒙特卡洛树搜索(MCTS)范式,其中机器学习(ML)模型生成热图,指示每个边作为最优解一部分的概率分布,以指导MCTS寻找解。然而,我们的理论和实验分析对基于ML的热图生成的有效性提出了质疑。为此,我们证明了一个简单的基线方法可以在热图生成中胜过复杂的ML方法。此外,我们对热图引导的MCTS范式的实践价值提出了质疑。为此,我们的发现显示了它与LKH-3启发式方法相比的劣势,尽管该范式依赖于特定问题的手工策略。对于未来,我们建议研究方向集中在开发更理论化的热图生成方法和探索自主、泛化的ML方法来解决组合问题。代码可供审查:https://github.com/xyfffff/rethink_mcts_for_tsp。

1. Introduction

旅行商问题(TSP)是一个经典的优化挑战,在物流、网络设计以及更广泛的运筹学(OR)领域有着重要的应用。传统上,通过像Concorde这样的精确算法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

太极生两鱼

要天天开心哦!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值