kears解决类别不平衡的自定义损失函数以及其代码

本文介绍了如何在Keras中实现类别不平衡问题的解决方案,包括Dice Loss和Focal Loss的添加方法。对于Dice Loss,需要在模型代码中添加相应代码,并在测试时于`test.py`中定义`custom_objects`。Focal Loss的添加与Dice Loss类似,但在测试时由于是嵌套函数,`custom_objects`的定义有所不同。参考了相关博客资源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.Dice loss
添加方法是在模型的代码页添加下列代码

def dice_coef(y_true, y_pred):
    y_true_f = K.flatten(y_true)
    y_pred = K.cast(y_pred, 'float32')
    y_pred_f = K.cast(K.greater(K.flatten(y_pred), 0.5), 'float32')
    intersection = y_true_f * y_pred_f
    score = 2. * K.sum(intersection) / (K.sum(y_true_f) + K.sum(y_pred_f))
    return score
def dice_loss(y_true, y_pred):
    smooth = 1.
    y_true_f = K.flatten(y_true)
    y_pred_f = K.flatten(y_pred)
    intersection = y_true_f * y_pred_f
    score = (2. * K.sum(intersection) + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth)
    return 1. - score

使用的话参考下列代码

model.compile(optimizer=Nadam(lr=learning_rate), loss=dice_coef_loss, metrics=['accuracy'])

但这样还不够在加载模型测试的时候可能报错,这是在测试代码(test.py)页添加以下代码(mobilenetv3small是我的模型,从我

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值