AcWing算法基础课----数学知识(一) 笔记 (数论 质数 + 约数)

数论

数论问题每一步都要计算时间复杂度,只有每一步都不超时才能做

质数

定义:
质数(素数)是指在大于1的自然数中,除了1和它本身以外不再有其他因数的自然数。

试除法判定质数 O(sqrt(n))

模板:

bool is_prime(int x)
{
    if (x < 2) return false;
    for (int i = 2; i <= x / i; i ++ )
        if (x % i == 0)
            return false;
    return true;
}

试除法分解质因数 O(logn)~O(sqrt(n))

从小到大枚举所有数
n中最多只包含一个大于sqrt(n)的质因子

模板:

void divide(int x)
{
   //从小到大枚举所有数
   for (int i = 2; i <= x / i; i ++ )
       if (x % i == 0)   //成立则 i 一定是质数
       {
           int s = 0;
           while (x % i == 0) x /= i, s ++ ;
           cout << i << ' ' << s << endl;
       }
   if (x > 1) cout << x << ' ' << 1 << endl;
   cout << endl;
}

朴素筛法求素数 O(nlogn)

优化后 O(nlog(logn))≈O(n)
优化后为:埃式筛法

质数定理:
1~n当中有( n / ln n)个质数

埃筛模板:

int primes[N], cnt;     // primes[]存储所有素数
bool st[N];         // st[x]存储x是否被筛掉

void get_primes(int n)
{
    for (int i = 2; i <= n; i ++ )
    {
        if (st[i]) continue;
        primes[cnt ++ ] = i;
        for (int j = i + i; j <= n; j += i)
            st[j] = true;
    }
}

线性筛法求素数

若数据量在1e7,线性筛比埃筛快一倍
若数据量在1e6,线性筛和埃筛差不多

线性筛核心思路:
n只会被最小质因子筛掉

if (i % primes[j] == 0)       //primes[j] 一定是i的最小质因子 
                              //primes[j]一定是primes[j]*i的最小质因子
else //primes[j]一定小于i的所有质因子
     //primes[j]也一定是primes[j]*i的最小质因子

//对于一个合数x,假设primes[j]是x的最小质因子
//当i枚举到x/primes[j]的时候可以被筛掉,所以每个数只会被筛一次

模板:

int primes[N], cnt;     // primes[]存储所有素数
bool st[N];         // st[x]存储x是否被筛掉

void get_primes(int n)
{
    for (int i = 2; i <= n; i ++ )
    {
        if (!st[i]) primes[cnt ++ ] = i;
        for (int j = 0; primes[j] <= n / i; j ++ )
        {
            st[primes[j] * i] = true;
            if (i % primes[j] == 0) break;   //primes[j] 一定是i的最小质因子
        }
    }
}

约数

试除法求所有约数 O(sqrt(n))

模板:

vector<int> get_divisors(int x)
{
    vector<int> res;
    for (int i = 1; i <= x / i; i ++ )
        if (x % i == 0)
        {
            res.push_back(i);
            if (i != x / i) res.push_back(x / i);
        }
    sort(res.begin(), res.end());
    return res;
}

约数个数和约数之和

约数个数:基于算术基本定理
n的每一个约数都对应c1~ck的一种取法

模板:

如果 N = p1^c1 * p2^c2 * ... *pk^ck
约数个数: (c1 + 1) * (c2 + 1) * ... * (ck + 1)
约数之和: (p1^0 + p1^1 + ... + p1^c1) * ... * (pk^0 + pk^1 + ... + pk^ck)

求约数个数
在这里插入图片描述
求约数之和
在这里插入图片描述

欧几里得算法 (辗转相除法)

(a,b)的最大公因数 = (b,a%b)的最大公因数

int gcd(int a, int b)
{
    return b ? gcd(b, a % b) : a;
}
  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值