Acwing-基础算法课笔记之数学知识(欧拉函数)

一、欧拉函数

1、欧拉函数的定义

1 ∼ N 1\sim N 1N中与 N N N互质的数的个数被称为欧拉函数,记为 ϕ ( N ) \phi(N) ϕ(N)

若在算数基本定理中, N = p 1 a 1 p 2 a 2 p 3 a 3 ⋅ ⋅ ⋅ p m a m N=p_1^{a_1}p_2^{a_2}p_3^{a_3}\cdot\cdot\cdot p_m^{a_m} N=p1a1p2a2p3a3pmam,则: ϕ ( N ) = N × p 1 − 1 p 1 × p 2 − 1 p 2 × ⋅ ⋅ ⋅ × p m − 1 p m \phi(N)=N\times\frac{p_1-1}{p_1}\times\frac{p_2-1}{p_2}\times\cdot\cdot\cdot\times \frac{p_m-1}{p_m} ϕ(N)=N×p1p11×p2p21××pmpm1

2、欧拉函数公式的证明过程

n = p 1 a 1 p 2 a 2 n=p_1^{a_1}p_2^{a_2} n=p1a1p2a2

ϕ ( n ) = ϕ ( p 1 a 1 p 2 a 2 ) \phi(n)=\phi(p_1^{a_1}p_2^{a_2}) ϕ(n)=ϕ(p1a1p2a2)

= p 1 a 1 p 2 a 2 − p 1 a 1 p 2 a 2 p 1 − p 1 a 1 p 2 a 2 p 2 + p 1 a 1 p 2 a 2 p 1 p 2 =p_1^{a_1}p_2^{a_2}-\frac{{p_1}^{a_1}{p_2}^{a_2}}{p_1}-\frac{{p_1}^{a_1}{p_2}^{a_2}}{p_2}+\frac{{p_1}^{a_1}{p_2}^{a_2}}{{p_1}{p_2}} =p1a1p2a2p1p1a1p2a2p2p1a1p2a2+p1p2p1a1p2a2

= p 1 a 1 − 1 p 2 a 2 − 1 ( p 1 p 2 − p 2 − p 1 + 1 ) =p_1^{a_1-1}p_2^{a_2-1}({p_1}{p_2}-{p_2}-{p_1}+1) =p1a11p2a21(p1p2p2p1+1)

= p 1 a 1 − 1 p 2 a 2 − 1 [ p 2 ( p 1 − 1 ) − ( p 1 − 1 ) ] =p_1^{a_1-1}p_2^{a_2-1}[{p_2}(p_1-1)-({p_1}-1)] =p1a11p2a21[p2(p11)(p11)]

= p 1 a 1 − 1 p 2 a 2 − 1 ( p 1 − 1 ) ( p 2 − 1 ) =p_1^{a_1-1}p_2^{a_2-1}({p_1}-1)({p_2}-1) =p1a11p2a21(p11)(p21)

= n × p 1 − 1 p 1 × p 2 − 1 p 2 =n\times\frac{p_1-1}{p_1}\times\frac{p_2-1}{p_2} =n×p1p11×p2p21

所以, ϕ ( n ) = n × p 1 − 1 p 1 × p 2 − 1 p 2 \phi(n)=n\times\frac{p_1-1}{p_1}\times\frac{p_2-1}{p_2} ϕ(n)=n×p1p11×p2p21

3、代码模板

int phi(int x)
{
    int res = x;
    for (int i = 2; i <= x / i; i ++ )
        if (x % i == 0)
        {
            res = res / i * (i - 1);
            while (x % i == 0) x /= i;
        }
    if (x > 1) res = res / x * (x - 1);

    return res;
}

Acwing-欧拉函数

二、筛法求欧拉函数

1、过程模拟

∙ 注意: \bullet\color{red} 注意: 注意:一个质数 i i i 的欧拉函数为 ϕ ( i ) = i − 1 \phi(i)=i-1 ϕ(i)=i1

i i i是被除数, p j {p_j} pj 是质数。

∙ \bullet i % p j = 0 i\%{p_j}=0 i%pj=0时,说明 p j {p_j} pj i i i 的一个质因子,推理如下:

ϕ ( i ) = i × p 1 − 1 p 1 × p 2 − 1 p 2 × ⋅ ⋅ ⋅ × p k − 1 p k \phi(i)=i\times\frac{p_1-1}{p_1}\times\frac{p_2-1}{p_2}\times\cdot\cdot\cdot\times\frac{p_k-1}{p_k} ϕ(i)=i×p1p11×p2p21××pkpk1

ϕ ( p j ⋅ i ) = p j ⋅ i × p 1 − 1 p 1 × p 2 − 1 p 2 × ⋅ ⋅ ⋅ × p k − 1 p k \phi({p_j}\cdot i)={p_j}\cdot i\times\frac{p_1-1}{p_1}\times\frac{p_2-1}{p_2}\times\cdot\cdot\cdot\times\frac{p_k-1}{p_k} ϕ(pji)=pji×p1p11×p2p21××pkpk1

= ϕ ( i ) × p j =\phi(i)\times {p_j} =ϕ(i)×pj

∙ \bullet i % p j ≠ 0 i\%{p_j}\not =0 i%pj=0时,推理如下:

ϕ ( i ) = i × p 1 − 1 p 1 × p 2 − 1 p 2 × ⋅ ⋅ ⋅ × p k − 1 p k \phi(i)=i\times\frac{p_1-1}{p_1}\times\frac{p_2-1}{p_2}\times\cdot\cdot\cdot\times\frac{p_k-1}{p_k} ϕ(i)=i×p1p11×p2p21××pkpk1

ϕ ( p j ⋅ i ) = p j ⋅ i × p 1 − 1 p 1 × p 2 − 1 p 2 × ⋅ ⋅ ⋅ × p k − 1 p k × p j − 1 p j \phi({p_j}\cdot i)={p_j}\cdot i\times\frac{p_1-1}{p_1}\times\frac{p_2-1}{p_2}\times\cdot\cdot\cdot\times\frac{p_k-1}{p_k}\times\frac{p_j-1}{p_j} ϕ(pji)=pji×p1p11×p2p21××pkpk1×pjpj1

= p j × ϕ ( i ) × p j − 1 p j ={p_j}\times \phi(i)\times \frac{p_j-1}{p_j} =pj×ϕ(i)×pjpj1

= ϕ ( i ) × ( p j − 1 ) =\phi(i)\times (p_j-1) =ϕ(i)×(pj1)

2、代码模板

ll get_eulers(int n) {
	phi[1] = 1;
	for (int i = 2; i <= n; i++) {
		if (!st[i]) {
			primes[cnt++] = i;
			phi[i] = i - 1;
		}
		for (int j = 0; primes[j] <= n / i; j++) {
			st[primes[j] * i] = true;
			if (i % primes[j] == 0) {
				phi[primes[j] * i] = primes[j] * phi[i];
				break;
			}
			phi[primes[j] * i] = (primes[j] - 1) * phi[i];
		}
	}
	ll res = 0;
	for (int i = 1; i <= n; i++)res += phi[i];
	return res;
}

Acwing-筛法求欧拉函数

  • 29
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不会敲代码的狗

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值