超参数调优:网格搜索,贝叶斯优化(optuna)详解

本文详细介绍了网格搜索方法GridSearchCV在scikit-learn中的使用,以及Optuna库的贝叶斯优化技术,涵盖了参数网格定义、评估指标、并行处理、超参数搜索策略等内容。此外,还对比了两者在超参数优化中的应用场景和优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数据科学:Scipy、Scikit-Learn笔记

LightGBM原生接口和Sklearn接口参数详解

XGBoost原生接口和Sklearn接口参数详解

网格搜索

GridSearchCV 是一个在 scikit-learn 库中用于执行网格搜索(grid search)参数调优的方法。网格搜索是一种通过遍历预定义的参数网格来确定机器学习模型最佳超参数组合的技术。它对给定的参数值集合中的所有可能组合进行训练和验证,最终选择具有最高交叉验证得分的参数配置。以

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

人工都不智能了

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值