吴恩达机器学习笔记1

1.监督与无监督学习
监督学习分为线性回归定位
线性回归可以概括为,依据离散点的分布来绘制一条能大致描述其规律的线(曲线或直线),定位可以概括为,对于给定的数据集和分类标准,将数据集按分类标准进行区分。之所以说这两者是监督学习,是因为训练的目的是人为控制的。在线性回归中,给定一定的参数,可以推测出要预测的某个解;在分类中,给定一个数据,可以预测其在哪个范围内。
线性回归的结果是连续的,而定位的结果是离散的。

无监督学习则是,给机器一定的数据,机器会按照“自己的方式”对数据进行分类,其分类标准不是预先设定的。

2.训练过程概述
从训练集中得到预测函数,输入参数到函数中得到预测结果:
在这里插入图片描述
--------------------------训练过程示意图------------------------------------------------------

3.代价方程
以单变量线性回归为例,假设线性回归方程为:
在这里插入图片描述
代价可以理解为该方程预测分布和实际数据集分布之间差异大小,需要用一个公式来量化它,这里用的是:
在这里插入图片描述
对于每一个变量x(共m个),通过计算预测函数h得到的结果,与实际数据y二者之间差值的平方,除以2m来量化。除以2m的意图只是让结果值小一些,实际上不除也能衡量“误差”,即代价的大小。2m中的2的意义在之后的求导步骤会解释。

4.梯度下降法
有了代价方程之后,下一步就是利用它找到代价最小的某个或某些点。
代价函数的图像可能是这样的:

在这里插入图片描述
也可能是这样的:
在这里插入图片描述
很显然前者有一个最低点,后者有若干个局部最低点。还有的代价函数难以用可视化图形的方法表示出来。

梯度下降法的要义在于,对于给定的一组参数(可以是任意的),它的代价如果不是最小的,那么该算法能够不断地在“代价函数山”上找到一处更低点,将参数更新为该点对应的参数。之后,再重复上述过程,直到找到一条“下山的路”。大约是这样
在这里插入图片描述
还是以单变量线性回归方程为例,其梯度下降方程为:
在这里插入图片描述
其中,α表示每一次移动的跨度。代价函数J显然是一个关于两个参数θ1和θ0的函数,那么关于其中某个参数求偏导的意义是显然的:如果对θ0的偏导为正数,代表朝着θ0的轴移动将会使代价函数增大,而我们得目的是时代价函数取到最小,所以前面带着的是负号。此时阿尔法的含义也变得很显然了。

α的取值如果过小,那么每次移动就会是很小的一步,显然,“下山”的过程将变得漫长。如果α取值过大,就有可能直接越过最低点。最坏的情况下,这会使你的代价J变得越来越大,考虑一下什么情况下会这样?

假定我们取到了一个合适的α值,再观察梯度方程。根据微积分里的知识,在局部存在一个极小值点的,该点的导数为0,也就是在靠近那一点的过程中,梯度方程中偏导的那一项会在某一时刻开始逐渐变小,并最终不断趋于0。在此过程中,对θ的修正幅度也越来越小,最终结果就是收敛于局部最低点。

将梯度函数变形为如下形式以方便计算:
在这里插入图片描述
可以看到,求导的过程中,二次方提出来的2将分母的2消去了,这解释了前面的疑问。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值