Python实现特征模态分解(FMD)

本文介绍了特征模态分解(FMD)作为一种信号处理技术,用于从数据中提取特征,尤其适用于非线性和非平稳信号。文章详细描述了FMD的原理、流程以及在实际代码中的应用,展示了其在信号分析中的优点和用途。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

      大家好,我是带我去滑雪!

      特征模态分解(Feature Mode Decomposition,FMD)是一种信号处理技术,用于从数据中提取特征,并将其表示为一组特定的模态成分。与其他分解方法类似,如小波变换或奇异值分解,FMD 旨在将信号分解为具有不同频率和振幅的模态成分,每个模态成分代表信号中的一个特定特征或组件。FMD 可以应用于多个领域,包括信号处理、图像处理、振动分析和数据压缩等。它通常用于处理非线性和非平稳信号,并且在提取信号中的重要特征方面具有一定的优势。 FMD 的目标是将原始信号分解为一组具有良好时频局部性质的基本模态成分,从而更好地理解和分析信号的结构和特征。

       特征模态分解流程如下:

  • (1)加载原始信号并输入参数,即模式数n和滤波器长度L;
  • (2)通过汉宁窗口初始化FIR滤波器组,使用K个滤波器,建议设置为5-10,并开始选代i=1;
  • (3)获得浦波信号(即分解模态);
  • (4)使用原始信号x,估计模态周期作为自相关谱在过零点后达到局部最大值的点来更新滤波器系数。完成一次迭代并设置i=i+1;
  • (5)判断选代次数是否达到预选代次数。如果不是,返回步骤(3),否则输入;
  • (6)计算每两个模态的构造一个KxK矩阵CC(KxK)。锁定CC值最大的两个模式CCmax,并使用估计的周期计算 它们的CK。然后,从两种模式中抛弃CK较小的模式,设K=K-1;
  • (7)判断模式K是否达到指定的n,如果不达到则返回步骡3,否则进入步骤8;
  • (8)获得保留模式作为最终分解模式。

      特征模态分解的优点:

  1. 同时考虑信号的冲动性和周期性,FMD分解目标更具有针对性,对其他干扰和噪声具有鲁棒性。
  2. 采用自适应FIR滤波器提取分解模式。不受滤波器形状、带宽、中心频率的限制,分解更加彻底。

下面开始代码实战。

目录

(1)导入相关模块和数据

(2)汉宁窗口初始化FIR滤波器组

(3)自相关普

(4)FMD函数

(5)调用函数与绘图


(1)导入相关模块和数据

import numpy as np
import matplotlib.pyplot as plt
from scipy.signal import firwin, lfilter, correlate, find_peaks
import pandas as pd


rows = 167
time = np.linspace(0, 1, rows)
signal_data =pd.read_csv('E:\工作\硕士\科研\任务8\代码\data.csv')
signal_df = pd.DataFrame(signal_data, columns=['Signal'])

(2)汉宁窗口初始化FIR滤波器组

def initialize_filters(L, K):
    filters = []
    for k in range(1, K+1):
        cutoff = 0.5 / k
        filter = firwin(L, cutoff, window='hann')
        filters.append(filter)
    return filters

(3)自相关普

def estimate_period(signal):
    correlation = correlate(signal, signal, mode='full')
    correlation = correlation[len(correlation) // 2:]
    peaks, _ = find_peaks(correlation)
    if len(peaks) > 1:
        period = peaks[1]
    else:
        period = len(signal)
    return period

(4)FMD函数


def fmd(signal, n, L=100, max_iters=10):
    K = min(10, max(5, n))
    filters = initialize_filters(L, K)
    modes = []
    signal = signal.values.flatten() if isinstance(signal, pd.DataFrame) else signal.flatten()

    for i in range(max_iters):
        for filter in filters:
            filtered_signal = lfilter(filter, 1.0, signal)
            period = estimate_period(filtered_signal)
            modes.append(filtered_signal)

        if len(modes) >= n:
            break

    return modes[:n]

(5)调用函数与绘图

n = 5
modes = fmd(signal_df, n)

# 检查模态数据
for i, mode in enumerate(modes):
    print(f'Mode {i+1}: Max={np.max(mode)}, Min={np.min(mode)}')

# 绘制结果
plt.figure(figsize=(10, 8))
plt.subplot(len(modes) + 1, 1, 1)
plt.plot(time, signal_df['Signal'].values)
plt.title('Original Signal')

for i, mode in enumerate(modes, start=1):
    plt.subplot(len(modes) + 1, 1, i+1)
    plt.plot(time, mode)
    plt.title(f'Mode {i}')

plt.tight_layout()
plt.show()

输出结果:

f7c27ff545b5405f8a8f046ca3f0abaf.png

需要数据集的家人们可以去百度网盘(永久有效)获取:

链接:https://pan.baidu.com/s/173deLlgLYUz789M3KHYw-Q?pwd=0ly6
提取码:2138 


更多优质内容持续发布中,请移步主页查看。

博主的WeChat:TCB1736732074

   点赞+关注,下次不迷路!

 

CSDN海神之光上传的代码均可运行,亲测可用,直接替换数据即可,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b或2023b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作 功率谱估计: 故障诊断分析: 雷达通信:雷达LFM、MIMO、成像、定位、干扰、检测、信号分析、脉冲压缩 滤波估计:SOC估计 目标定位:WSN定位、滤波跟踪、目标定位 生物电信号:肌电信号EMG、脑电信号EEG、心电信号ECG 通信系统:DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪(CEEMDAN)、数字信号调制、误码率、信号估计、DTMF、信号检测识别融合、LEACH协议、信号检测、水声通信 1. EMD(经验模态分解,Empirical Mode Decomposition) 2. TVF-EMD(时变滤波的经验模态分解,Time-Varying Filtered Empirical Mode Decomposition) 3. EEMD(集成经验模态分解,Ensemble Empirical Mode Decomposition) 4. VMD(变分模态分解,Variational Mode Decomposition) 5. CEEMDAN(完全自适应噪声集合经验模态分解,Complementary Ensemble Empirical Mode Decomposition with Adaptive Noise) 6. LMD(局部均值分解,Local Mean Decomposition) 7. RLMD(鲁棒局部均值分解, Robust Local Mean Decomposition) 8. ITD(固有时间尺度分解,Intrinsic Time Decomposition) 9. SVMD(逐次变分模态分解,Sequential Variational Mode Decomposition) 10. ICEEMDAN(改进的完全自适应噪声集合经验模态分解,Improved Complementary Ensemble Empirical Mode Decomposition with Adaptive Noise) 11. FMD(特征模式分解,Feature Mode Decomposition) 12. REMD(鲁棒经验模态分解,Robust Empirical Mode Decomposition) 13. SGMD(辛几何模态分解,Spectral-Grouping-based Mode Decomposition) 14. RLMD(鲁棒局部均值分解,Robust Intrinsic Time Decomposition) 15. ESMD(极点对称模态分解, extreme-point symmetric mode decomposition) 16. CEEMD(互补集合经验模态分解,Complementary Ensemble Empirical Mode Decomposition) 17. SSA(奇异谱分析,Singular Spectrum Analysis) 18. SWD(群分解,Swarm Decomposition) 19. RPSEMD(再生相移正弦辅助经验模态分解,Regenerated Phase-shifted Sinusoids assisted Empirical Mode Decomposition) 20. EWT(经验小波变换,Empirical Wavelet Transform) 21. DWT(离散小波变换,Discraete wavelet transform) 22. TDD(时域分解,Time Domain Decomposition) 23. MODWT(最大重叠离散小波变换,Maximal Overlap Discrete Wavelet Transform) 24. MEMD(多元经验模态分解,Multivariate Empirical Mode Decomposition) 25. MVMD(多元变分模态分解,Multivariate Variational Mode Decomposition)
评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

带我去滑雪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值