k-邻近算法概述
kNN 采用测量不同特征值之间的距离方法进行分类。
工作原理: 输入训练数据,即带标签的样本数据集,接着输入没有标签的新数据,将新数据的每个特征与样本集中数据对应的特征比较,选出特征最相似(最邻近)的数据的分类标签,一般只选择数据集中相似度最高的前k个数据,(k<=20),选择k个最相似数据中分类标签出现最多的那一个作为新数据的分类标签
代码实现(附每一步的解释)
import operator
from numpy import *
def createDataSet():
group = array([[1.0, 1.1], [1.0, 1.0], [0, 0], [0, 0.1]])
labels = ['A', 'A', 'B', 'B']
return group, labels
def classify0(inX, dataSet, labels, k):
# shape 可以获取矩阵的形状,获取的结果是一个元组,输出行数和列数,shape[0]是行数,应为4
dataSetSize = dataSet.shape[0]
# tile 返回的是数组类型,第一个A本身是一个4行2列的数组,reps的第一个数代表行数重复,后一个数代表列数重复
# 复制测试集,产生与样本数据集相同个数测试用于与每一个样本数据计算距离
diffMat = tile(inX, (dataSetSize, 1))-dataSet
# 矩阵各个元素值的平方/开平方
sqDiffMat = diffMat ** 2
# 默认的axis=0 就是普通的相加 而当加入axis = 1以后就是将一个矩阵的每一行向量相加
sqDistances = sqDiffMat.sum(axis=1)
# 再开根号
distances = sqDistances ** 0.5
sortedDistIndicies = distances.argsort() # argsort函数返回的是数组值从小到大的索引值
classCount = {}
for i in range(k):
voteIlabel = labels[sortedDistIndicies[i]] # 取出前k组中第i个对应的标签
# dict.get(key, default=None) key 字典中要查找的键 default 如果指定键的值不存在时,返回该默认值。
# 建立字典,对应的标签+1 统计出最多的一个标签
classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1
# sorted(需要排序的数组, 依据数组的某一列为排序依据, 是否逆序)
# 在Python 3.x 里面,iteritems()方法已经废除了。在3.x里用 items()替换iteritems()
# operator模块提供的itemgetter函数用于获取对象的哪些维的数据
# 对字典进行排序
sortedClassCount = sorted(classCount.items(),
key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0]
group, labels = createDataSet()
result = classify0([0, 0], group, labels, 3)
print(result)
解析数据
利用上述算法,我们可以改进约会网站,但是需要首先解析一份txt的训练数据:
def file2matrix(filename):
fr = open(filename)
arrayOLines = fr.readlines()
numberOfLines = len(arrayOLines)
# 返回来一个给定形状和类型的用0填充的数组;(行数为numberOfLines,列数为3)
returnMat = zeros((numberOfLines, 3))
classLabelVector = []
index = 0
for line in arrayOLines:
line = line.strip() # 截取掉所有回车字符
listFromLine = line.split('\t') # 用制表符tab将上一行得到的数据分割成一个元素列表
returnMat[index, :] = listFromLine[0:3] # index 代表第几行,每行取前三列
classLabelVector.append(int(listFromLine[-1])) # 取标签
index += 1
return returnMat, classLabelVector
得到对应的数据文本和标签
归一化
由距离计算公式可得
在项目中会发现飞行里程数和其他相差数个数量级,对结果本身造成的影响较大,会覆盖掉其他数据的影响,因此采用(value-min)/(max-min)来对数据进行归一化处理,使三部分权重相同,排除较大数据的影响:
def autoNorm(dataSet):
minVals = dataSet.min(0) # 参数0代表从列中取而不是从行中取最小值
maxVals = dataSet.max(0)
ranges = maxVals - minVals
normDataSet = zeros(shape(dataSet))
m = dataSet.shape[0]
normDataSet = dataSet - tile(minVals, (m, 1))
normDataSet = normDataSet/tile(ranges, (m, 1))
return normDataSet, ranges, minVals
预测
有了上述的准备,我们便可以对未来的数据进行预测
def classifyPerson():
resultList = ['没感觉', '一点点感觉', '很有感觉']
percentTats = float(input("看游戏视频的时间"))
# For Python 3.x, use input(). For Python 2.x, use raw_input(). Don't forget you can add a prompt string in your input() call to create one less print statement. input("GUESS THAT NUMBER!").
ffMiles = float(input("每年飞行常客旅行公里数"))
iceCream = float(input("每周冰淇淋的公斤数"))
datingDataMat, datingLabels = file2matrix('ch02\\ch2dataing.txt')
normMat, ranges, minVals = autoNorm(datingDataMat)
inArr = array([ffMiles, percentTats, iceCream])
classifierResult = classify0(
(inArr-minVals)/ranges, normMat, datingLabels, 3)
print("你对他:", resultList[classifierResult-1])