小阳的贝壳
题目描述
小阳手中一共有
n
n
n 个贝壳,每个贝壳都有颜色,且初始第
i
i
i 个贝壳的颜色为
c
o
l
i
col_i
coli 。现在小阳有 3 种操作:
1 l r x:给 [l,r] 区间里所有贝壳的颜色值加上 x 。
2 l r:询问 [l,r] 区间里所有相邻贝壳颜色值的差(取绝对值)的最大值(若 l = r 输出 0)。
3 l r :询问 [l,r] 区间里所有贝壳颜色值的最大公约数。
题目解答
如果不带修,那么求区间的
g
c
d
gcd
gcd ,只用线段树就可以解决。但是这里我们发现很难用线段树区间更新去更新区间
g
c
d
gcd
gcd ,所以我们这里可以进行一些转化。我们可以由
g
c
d
gcd
gcd 性质(辗转相减法)得知:
g
c
d
(
a
l
,
a
l
+
1
,
a
l
+
2
.
.
.
a
r
)
=
g
c
d
(
a
l
,
a
l
+
1
−
a
l
,
a
l
+
2
−
a
l
+
1
.
.
.
a
r
−
a
r
−
1
)
gcd(a_l, a_{l + 1},a_{l+2}...a_r)=gcd(a_l,a_{l+1}-a_{l},a_{l+2}-a_{l+1}...a_{r}-a_{r-1})
gcd(al,al+1,al+2...ar)=gcd(al,al+1−al,al+2−al+1...ar−ar−1)
即对应了一个
a
l
a_l
al 与当前差分数组的区间
g
c
d
gcd
gcd ,所以我们现在决定维护差分数组的
g
c
d
gcd
gcd ,那么我们可以发现差分数组的更新只要单点修改,那么这样问题就解决了。
注:线段树询问差分数组区间 g c d gcd gcd 的时候要初始化答案为0,如下:
ll query_gcd(int rt, int tl, int tr, int l, int r) {
if (l <= tl && tr <= r) {
return tree[rt].Gcd;
}
int mid = tl + tr >> 1;
ll ans = 0;
if (l <= mid) ans = query_gcd(lson, tl, mid, l, r);
if (mid < r) ans = __gcd(ans, query_gcd(rson, mid + 1, tr, l, r));
return ans;
}
我们初始化为 1 1 1 的想法是与询问区间求 g c d gcd gcd 的时候会等于询问区间 g c d gcd gcd 本身。但是有的询问的差分数组的区间 g c d gcd gcd 会存在 0 0 0 的情况,这样的情况求出来就已经不再是询问区间本身的 g c d gcd gcd ,就已经会对答案进行改变,造成影响,所以这里要把其(上图中的 a n s ans ans )初始化为 0 0 0
c o d e code code
#include <bits/stdc++.h>
#define lson rt<<1
#define rson (rt<<1)|1
typedef long long ll;
const int N = 1e5 + 2;
struct Node {
ll Max;
ll Gcd;
ll Sum;
};
int n, m;
ll a[N];
Node tree[N << 2];
using namespace std;
void push_up(int rt) {
tree[rt].Max = max(tree[lson].Max, tree[rson].Max);
tree[rt].Gcd = __gcd(tree[lson].Gcd, tree[rson].Gcd);
tree[rt].Sum = tree[lson].Sum + tree[rson].Sum;
}
void build(int rt, int tl, int tr) {
if (tl == tr) {
tree[rt].Max = abs(a[tl]);
tree[rt].Gcd = tree[rt].Sum = a[tl];
return ;
}
int mid = tl + tr >> 1;
build(lson, tl, mid);
build(rson, mid + 1, tr);
push_up(rt);
}
void update(int rt, int tl, int tr, int pos, int data) {
if (tl == tr) {
tree[rt].Max = abs(tree[rt].Sum + data);
tree[rt].Gcd += data;
tree[rt].Sum += data;
return ;
}
int mid = tl + tr >> 1;
if (pos <= mid) update(lson, tl, mid, pos, data);
else update(rson, mid + 1, tr, pos, data);
push_up(rt);
}
ll query_max(int rt, int tl, int tr, int l, int r) {
if (l <= tl && tr <= r) {
return tree[rt].Max;
}
int mid = tl + tr >> 1;
ll ans = -1e18;
if (l <= mid) ans = query_max(lson, tl, mid, l, r);
if (mid < r) ans = max(ans, query_max(rson, mid + 1, tr, l, r));
return ans;
}
ll query_sum(int rt, int tl, int tr, int l, int r) {
if (l <= tl && tr <= r) {
return tree[rt].Sum;
}
int mid = tl + tr >> 1;
ll ans = 0;
if (l <= mid) ans += query_sum(lson, tl, mid, l, r);
if (mid < r) ans += query_sum(rson, mid + 1, tr, l, r);
return ans;
}
ll query_gcd(int rt, int tl, int tr, int l, int r) {
if (l <= tl && tr <= r) {
return tree[rt].Gcd;
}
int mid = tl + tr >> 1;
ll ans = 0;
if (l <= mid) ans = query_gcd(lson, tl, mid, l, r);
if (mid < r) ans = __gcd(ans, query_gcd(rson, mid + 1, tr, l, r));
return ans;
}
int main() {
#ifndef ONLINE_JUDGE
freopen("in.txt", "r", stdin);
freopen("out.txt", "w", stdout);
#endif
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; ++i) {
scanf("%lld", &a[i]);
}
for (int i = n; i >= 2; --i) {
a[i] -= a[i - 1];
}
build(1, 1, n);
while(m--) {
int op, l, r;
scanf("%d%d%d", &op, &l, &r);
if (op == 1) {
int x;
scanf("%d", &x);
if (r != n) {
update(1, 1, n, l, x);
update(1, 1, n, r + 1, -x);
}
else {
update(1, 1, n, l, x);
}
}
else if (op == 2) {
if (l == r) {
printf("0\n");
}
else {
printf("%lld\n", query_max(1, 1, n, l + 1, r));
}
}
else {
ll x = query_sum(1, 1, n, 1, l);
if (l == r) {
printf("%lld\n", x);
}
else {
ll y = query_gcd(1, 1, n, l + 1, r);
printf("%lld\n", __gcd(x, abs(y)));
}
}
}
}