小阳的贝壳(区间gcd)

30 篇文章 0 订阅
18 篇文章 0 订阅

小阳的贝壳

原题链接

题目描述
小阳手中一共有 n n n 个贝壳,每个贝壳都有颜色,且初始第 i i i 个贝壳的颜色为 c o l i col_i coli 。现在小阳有 3 种操作:

1 l r x:给 [l,r] 区间里所有贝壳的颜色值加上 x 。

2 l r:询问 [l,r] 区间里所有相邻贝壳颜色值的差(取绝对值)的最大值(若 l = r 输出 0)。

3 l r :询问 [l,r] 区间里所有贝壳颜色值的最大公约数。

题目解答
如果不带修,那么求区间的 g c d gcd gcd ,只用线段树就可以解决。但是这里我们发现很难用线段树区间更新去更新区间 g c d gcd gcd ,所以我们这里可以进行一些转化。我们可以由 g c d gcd gcd 性质(辗转相减法)得知: g c d ( a l , a l + 1 , a l + 2 . . . a r ) = g c d ( a l , a l + 1 − a l , a l + 2 − a l + 1 . . . a r − a r − 1 ) gcd(a_l, a_{l + 1},a_{l+2}...a_r)=gcd(a_l,a_{l+1}-a_{l},a_{l+2}-a_{l+1}...a_{r}-a_{r-1}) gcd(al,al+1,al+2...ar)=gcd(al,al+1al,al+2al+1...arar1)
即对应了一个 a l a_l al 与当前差分数组的区间 g c d gcd gcd ,所以我们现在决定维护差分数组的 g c d gcd gcd ,那么我们可以发现差分数组的更新只要单点修改,那么这样问题就解决了。

:线段树询问差分数组区间 g c d gcd gcd 的时候要初始化答案为0,如下:

ll query_gcd(int rt, int tl, int tr, int l, int r) {
    if (l <= tl && tr <= r) {
        return tree[rt].Gcd;
    }
    int mid = tl + tr >> 1;
    ll ans = 0;
    if (l <= mid) ans = query_gcd(lson, tl, mid, l, r);
    if (mid < r) ans = __gcd(ans, query_gcd(rson, mid + 1, tr, l, r));
    return ans;
}

我们初始化为 1 1 1 的想法是与询问区间求 g c d gcd gcd 的时候会等于询问区间 g c d gcd gcd 本身。但是有的询问的差分数组的区间 g c d gcd gcd 会存在 0 0 0 的情况,这样的情况求出来就已经不再是询问区间本身的 g c d gcd gcd ,就已经会对答案进行改变,造成影响,所以这里要把其(上图中的 a n s ans ans )初始化为 0 0 0

c o d e code code

#include <bits/stdc++.h>
#define lson rt<<1
#define rson (rt<<1)|1

typedef long long ll;

const int N = 1e5 + 2;

struct Node {
    ll Max;
    ll Gcd;
    ll Sum;
};
int n, m;
ll a[N];
Node tree[N << 2];

using namespace std;

void push_up(int rt) {
    tree[rt].Max = max(tree[lson].Max, tree[rson].Max);
    tree[rt].Gcd = __gcd(tree[lson].Gcd, tree[rson].Gcd);
    tree[rt].Sum = tree[lson].Sum + tree[rson].Sum;
}

void build(int rt, int tl, int tr) {
    if (tl == tr) {
        tree[rt].Max = abs(a[tl]);
        tree[rt].Gcd = tree[rt].Sum = a[tl];
        return ;
    }
    int mid = tl + tr >> 1;
    build(lson, tl, mid);
    build(rson, mid + 1, tr);
    push_up(rt);
}

void update(int rt, int tl, int tr, int pos, int data) {
    if (tl == tr) {
        tree[rt].Max = abs(tree[rt].Sum + data);
        tree[rt].Gcd += data;
        tree[rt].Sum += data;
        return ;
    }
    int mid = tl + tr >> 1;
    if (pos <= mid) update(lson, tl, mid, pos, data);
    else update(rson, mid + 1, tr, pos, data);
    push_up(rt);
}

ll query_max(int rt, int tl, int tr, int l, int r) {
    if (l <= tl && tr <= r) {
        return tree[rt].Max;
    }
    int mid = tl + tr >> 1;
    ll ans = -1e18;
    if (l <= mid) ans = query_max(lson, tl, mid, l, r);
    if (mid < r) ans = max(ans, query_max(rson, mid + 1, tr, l, r));
    return ans;
}

ll query_sum(int rt, int tl, int tr, int l, int r) {
    if (l <= tl && tr <= r) {
        return tree[rt].Sum;
    }
    int mid = tl + tr >> 1;
    ll ans = 0;
    if (l <= mid) ans += query_sum(lson, tl, mid, l, r);
    if (mid < r) ans += query_sum(rson, mid + 1, tr, l, r);
    return ans;
}

ll query_gcd(int rt, int tl, int tr, int l, int r) {
    if (l <= tl && tr <= r) {
        return tree[rt].Gcd;
    }
    int mid = tl + tr >> 1;
    ll ans = 0;
    if (l <= mid) ans = query_gcd(lson, tl, mid, l, r);
    if (mid < r) ans = __gcd(ans, query_gcd(rson, mid + 1, tr, l, r));
    return ans;
}

int main() {
#ifndef ONLINE_JUDGE
    freopen("in.txt", "r", stdin);
    freopen("out.txt", "w", stdout);
#endif
    scanf("%d%d", &n, &m);
    for (int i = 1; i <= n; ++i) {
        scanf("%lld", &a[i]);
    }
    for (int i = n; i >= 2; --i) {
        a[i] -= a[i - 1];
    }
    build(1, 1, n);
    while(m--) {
        int op, l, r;
        scanf("%d%d%d", &op, &l, &r);
        if (op == 1) {
            int x;
            scanf("%d", &x);
            if (r != n) {
                update(1, 1, n, l, x);
                update(1, 1, n, r + 1, -x);
            }
            else {
                update(1, 1, n, l, x);
            }
        }
        else if (op == 2) {
            if (l == r) {
                printf("0\n");
            }
            else {
                printf("%lld\n", query_max(1, 1, n, l + 1, r));
            }
        }
        else {
            ll x = query_sum(1, 1, n, 1, l);
            if (l == r) {
                printf("%lld\n", x);
            }
            else {
                ll y = query_gcd(1, 1, n, l + 1, r);
                printf("%lld\n", __gcd(x, abs(y)));
            }
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值