【acwing】849. Dijkstra求最短路 I** && 850. Dijkstra求最短路 II*

本文介绍了两种实现Dijkstra算法的方法,分别用于求解图中的最短路径问题。第一种是朴素版,适用于较小规模的数据,使用了邻接矩阵。第二种是堆优化版,利用优先队列提高效率,适用于大规模且边数较多的情况。两种实现均考虑了存在重边的情况,并在代码中进行了说明和比较。
摘要由CSDN通过智能技术生成

Dijkstra求最短路 I (朴素版)

穿越隧道

不考虑边权为负的情况。

#include <bits/stdc++.h>
using namespace std;
const int N = 510;
int g[N][N];
int n,m;
int dis[N];
bool st[N];
int dijkstra(){
    memset(dis,0x3f,sizeof(dis));
    dis[1] = 0;//1表示从编号为1的点开始,即1为起始点。
    for(int i = 0; i < n; i++){
        int t = -1;
        for(int j = 1; j <= n; j++){
            if(!st[j]&&(t == -1 || dis[t] > dis[j]))//如果编号为j的点,没有访问(访问:指已经有一个最短距离)
                t = j;
        }
        st[t] = true;//表明该点已经访问,已经找到了编号为j的最短距离。
        for(int j = 1; j <= n; j++){//对t的所有邻居(邻居指还没找到最短路的)进行遍历找最小值
            dis[j] = min(dis[j],dis[t] + g[t][j]);
        }
    }
    if(dis[n] == 0x3f3f3f3f) return -1;
    return dis[n];
    
}
int main(){
    memset(g,0x3f,sizeof(g));
    scanf("%d%d",&n,&m);
    while(m--){
        int x,y,c;
        scanf("%d%d%d",&x,&y,&c);
        g[x][y] = min(g[x][y],c);//因存在重边,所以选边权最小的边
    }
    int t = dijkstra();
    printf("%d\n",t);
    return 0;
}

Dijkstra求最短路 II (优化版)

穿越隧道

堆是stl中的堆,非手写。
当m和n处于一个量级时,且n的数据量不能够开数组时,可以选择堆优化和邻接表的Dijkstra.
当m是 n 2 n^2 n2时,且 n 2 n^2 n2的大小的数组不会超内存时,可以选择邻接矩阵。
需反复记忆

#include <bits/stdc++.h>
using namespace std;
const int N  = 2e5 + 10;
typedef pair<int,int> pii;
int n,m;
int h[N],e[N],w[N],ne[N],idx;
bool st[N];
//链式前向星模型邻接表
void add(int a, int b, int c){
    e[idx] = b,w[idx] = c,ne[idx] = h[a],h[a] = idx++;
}
int dis[N];
int dijkstra(){
    memset(dis,0x3f,sizeof(dis));
    dis[1] = 0;
    priority_queue<pii, vector<pii>, greater<pii>> heap;//自定义的方式有点不太理解
    heap.push({0,1});
    //0为距离,1为编号为1的结点。
    while(heap.size()){
        auto t = heap.top();
        heap.pop();
        int ver = t.second, dist = t.first;
        if(st[ver]) continue;
        st[ver] = true;
        for(int i = h[ver]; i!=-1; i = ne[i]){//邻接表
            int j = e[i];//j为头节点为i的邻居结点
            //w[i]为j和i结点之间的距离。
            //dist为t这种数据类型中的结点到1结点的距离,加上i到j的距离,来更新1结点到j的距离。
            //上述表达,可能有问题
            if(dis[j] > dist + w[i]){
                dis[j] = dist + w[i];
                heap.push({dis[j],j});//更新完后,放入堆中。将最小值弄到最顶部。
            }
        }
    }
    if(dis[n] == 0x3f3f3f3f) return -1;
    else return dis[n];
}
int main(){
    scanf("%d%d",&n,&m);
    memset(h,-1,sizeof(h));
    while(m--){
        int a,b,c;
        scanf("%d%d%d",&a,&b,&c);
        add(a,b,c);
    }
    int t = dijkstra();
    printf("%d\n",t);
    
    
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值