Dijkstra求最短路 I (朴素版)
不考虑边权为负的情况。
#include <bits/stdc++.h>
using namespace std;
const int N = 510;
int g[N][N];
int n,m;
int dis[N];
bool st[N];
int dijkstra(){
memset(dis,0x3f,sizeof(dis));
dis[1] = 0;//1表示从编号为1的点开始,即1为起始点。
for(int i = 0; i < n; i++){
int t = -1;
for(int j = 1; j <= n; j++){
if(!st[j]&&(t == -1 || dis[t] > dis[j]))//如果编号为j的点,没有访问(访问:指已经有一个最短距离)
t = j;
}
st[t] = true;//表明该点已经访问,已经找到了编号为j的最短距离。
for(int j = 1; j <= n; j++){//对t的所有邻居(邻居指还没找到最短路的)进行遍历找最小值
dis[j] = min(dis[j],dis[t] + g[t][j]);
}
}
if(dis[n] == 0x3f3f3f3f) return -1;
return dis[n];
}
int main(){
memset(g,0x3f,sizeof(g));
scanf("%d%d",&n,&m);
while(m--){
int x,y,c;
scanf("%d%d%d",&x,&y,&c);
g[x][y] = min(g[x][y],c);//因存在重边,所以选边权最小的边
}
int t = dijkstra();
printf("%d\n",t);
return 0;
}
Dijkstra求最短路 II (优化版)
堆是stl中的堆,非手写。
当m和n处于一个量级时,且n的数据量不能够开数组时,可以选择堆优化和邻接表的Dijkstra.
当m是 n 2 n^2 n2时,且 n 2 n^2 n2的大小的数组不会超内存时,可以选择邻接矩阵。
需反复记忆
#include <bits/stdc++.h>
using namespace std;
const int N = 2e5 + 10;
typedef pair<int,int> pii;
int n,m;
int h[N],e[N],w[N],ne[N],idx;
bool st[N];
//链式前向星模型邻接表
void add(int a, int b, int c){
e[idx] = b,w[idx] = c,ne[idx] = h[a],h[a] = idx++;
}
int dis[N];
int dijkstra(){
memset(dis,0x3f,sizeof(dis));
dis[1] = 0;
priority_queue<pii, vector<pii>, greater<pii>> heap;//自定义的方式有点不太理解
heap.push({0,1});
//0为距离,1为编号为1的结点。
while(heap.size()){
auto t = heap.top();
heap.pop();
int ver = t.second, dist = t.first;
if(st[ver]) continue;
st[ver] = true;
for(int i = h[ver]; i!=-1; i = ne[i]){//邻接表
int j = e[i];//j为头节点为i的邻居结点
//w[i]为j和i结点之间的距离。
//dist为t这种数据类型中的结点到1结点的距离,加上i到j的距离,来更新1结点到j的距离。
//上述表达,可能有问题
if(dis[j] > dist + w[i]){
dis[j] = dist + w[i];
heap.push({dis[j],j});//更新完后,放入堆中。将最小值弄到最顶部。
}
}
}
if(dis[n] == 0x3f3f3f3f) return -1;
else return dis[n];
}
int main(){
scanf("%d%d",&n,&m);
memset(h,-1,sizeof(h));
while(m--){
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
add(a,b,c);
}
int t = dijkstra();
printf("%d\n",t);
return 0;
}