[AcWing]849. Dijkstra求最短路 I(C++实现)朴素Dijkstra算法求最短路模板题

本文详细解析了朴素Dijkstra算法的原理,展示了如何用C++解决849题最短路径问题。通过实例演示了图的初始化、距离更新和关键步骤,并介绍了所需前置知识和数据结构。重点在于理解算法思想和循环次数的确定。

[AcWing]849. Dijkstra求最短路 I(C++实现)朴素Dijkstra算法求最短路模板题

1. 题目

在这里插入图片描述

2. 读题(需要重点注意的东西)

思路:朴素Dijkstraa算法的主要思想如图
在这里插入图片描述

d[i]表示第i个节点到第一个节点的距离
首先将d[1]置位0,d[1] = 0;

然后用节点1更新与之相连的所有节点的距离:
d[2] = 2;
d[3] = 5;

然后找到剩余节点中离节点1距离最小的节点为节点2;

然后再用节点2更新与之相连的节点的距离:
d[3] = d[2] + 2 = 4(节点2到节点3的距离)
因为 此时 d[2] + 2 < d[3] ,所以更新 d[3] = 4;

这个更新操作,就称之为Dijkstra算法。(3个节点,总共需要更新2次;那么n个节点,总共需要更新n-1次)

3. 解法

---------------------------------------------------解法---------------------------------------------------

#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;

const int N = 510;

int n, m;
int g[N][N]; // 图g,存的是两条边之间的距离,如g[a][b]存的就是a到b的距离
int dist[N]; // 从1号点走到每个点的最短距离是多少
bool st[N]; // i号点的距离是否确定了

int dijkstra()
{
   
          
    // 将所有的距离初始化为无穷
    memset(dist, 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Cloudeeeee

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值