Ural大学有N名职员,编号为1~N。
他们的关系就像一棵以校长为根的树,父节点就是子节点的直接上司。
每个职员有一个快乐指数,用整数 Hi
给出,其中 1≤i≤N
。
现在要召开一场周年庆宴会,不过,没有职员愿意和直接上司一起参会。
在满足这个条件的前提下,主办方希望邀请一部分职员参会,使得所有参会职员的快乐指数总和最大,求这个最大值。
输入格式
第一行一个整数N。
接下来N行,第 i 行表示 i 号职员的快乐指数Hi
。
接下来N-1行,每行输入一对整数L, K,表示K是L的直接上司。
输出格式
输出最大的快乐指数。
我们以节点编号(子树的根)作为DP状态的第一维,一个志愿是否愿意参加只和他的上司是否参加有直接的关系。所以我们的数保存两个信息,根节点参加时正科子树的最大快乐指数和以及根节点不参加时的最大快乐子树和。
假设f[x,0]表示以x为根节点的子树中邀请一部分职员参加会议,并且x不参加会议,快乐指数的总值最大。x的子节点可参加,也可以不参加
f[x,0]=max(f[s,0],f[s,1])
假设f[x,1]表示以x为跟的子树中,邀请一部分参加会议,并且x参加舞会。快乐值最大。这样x的所有子节点都不能参加会议
f[x,1]=h(x)+f[s,0]
#include<iostream>
#include<vector>
using namespace std;
vector<int> son[10010];
int f[10010][2],v[10010],h[100010],n;
void dp(int x){
f[x][0]=0;
f[x][1]=h[x];
for(int i=0;i<son[x].size();i++)
{
int y=son[x][i];
dp(y);
f[x][0]+=max(f[y][0],f[y][1]);//求子节点的最大值
f[x][1]+=f[y][0];
}
}
int main()
{
cin>>n;
for(int i=1;i<=n;i++)
cin>>h[i];
for(int i=1;i<n;i++)
{
int x,y;
cin>>x>>y;
v[x]=1;
son[y].push_back(x);
}
int root;
for(int i=1;i<=n;i++)
{
if(!v[i]){
root=i;
break;
}
}
dp(root);
cout<<max(f[root][0],f[root][1]);
return 0;
}