450. 删除二叉搜索树中的节点

原题链接:450. 删除二叉搜索树中的节点

思路:

终止条件
遇到空返回,其实这也说明没找到删除的节点,遍历到空节点直接返回了

有以下五种情况:
第一种情况:没找到删除的节点,遍历到空节点直接返回了
找到删除的节点
第二种情况:左右孩子都为空(叶子节点),直接删除节点, 返回NULL为根节点
第三种情况:删除节点的左孩子为空,右孩子不为空,删除节点,右孩子补位,返回右孩子为根节点
第四种情况:删除节点的右孩子为空,左孩子不为空,删除节点,左孩子补位,返回左孩子为根节点
第五种情况:左右孩子节点都不为空,则将删除节点的左子树头结点(左孩子)放到删除节点的右子树的最左面节点的左孩子上,返回删除节点右孩子为新的根节点。

全代码:

class Solution {
public:
    TreeNode* deleteNode(TreeNode* root, int key) {
        if (root == nullptr) return root; // 第一种情况:没找到删除的节点,遍历到空节点直接返回了
        if (root->val == key) {
            // 第二种情况:左右孩子都为空(叶子节点),直接删除节点, 返回NULL为根节点
            if (root->left == nullptr && root->right == nullptr) {
                ///! 内存释放
                delete root;
                return nullptr;
            }
            // 第三种情况:其左孩子为空,右孩子不为空,删除节点,右孩子补位 ,返回右孩子为根节点
            else if (root->left == nullptr) {
                auto retNode = root->right;
                ///! 内存释放
                delete root;
                return retNode;
            }
            // 第四种情况:其右孩子为空,左孩子不为空,删除节点,左孩子补位,返回左孩子为根节点
            else if (root->right == nullptr) {
                auto retNode = root->left;
                ///! 内存释放
                delete root;
                return retNode;
            }
            // 第五种情况:左右孩子节点都不为空,则将删除节点的左子树放到删除节点的右子树的最左面节点的左孩子的位置
            // 并返回删除节点右孩子为新的根节点。
            else {
                TreeNode* cur = root->right; // 找右子树最左面的节点
                while(cur->left != nullptr) {
                    cur = cur->left;
                }
                cur->left = root->left; // 把要删除的节点(root)左子树放在cur的左孩子的位置
                TreeNode* tmp = root;   // 把root节点保存一下,下面来删除
                root = root->right;     // 返回旧root的右孩子作为新root
                delete tmp;             // 释放节点内存(这里不写也可以,但C++最好手动释放一下吧)
                return root;
            }
        }
        if (root->val > key) root->left = deleteNode(root->left, key);
        if (root->val < key) root->right = deleteNode(root->right, key);
        return root;
    }
};
C语言二叉搜索树是一种非常常用的数据结构,其插入和查找的时间复杂度都是O(logn)。当然,在使用二叉搜索树时,我们也需要注意它的删除操作,否则会影响它的性能。 二叉搜索树删除操作可以分为以下三种情况: 1. 被删除节点为叶子节点:直接将其删除即可。 2. 被删除节点只有一个子节点:将其子节点替代被删除节点即可。 3. 被删除节点有两个子节点:需要找到其右子树的最小值或左子树的最大值来替代被删除节点。 具体实现时,我们可以使用递归或者迭代的方式进行实现。下面是一个使用递归的实现方式: ``` struct TreeNode* deleteNode(struct TreeNode* root, int key) { if (root == NULL) return root; if (key < root->val) { root->left = deleteNode(root->left, key); } else if (key > root->val) { root->right = deleteNode(root->right, key); } else { if (root->left == NULL) { struct TreeNode* temp = root->right; free(root); return temp; } else if (root->right == NULL) { struct TreeNode* temp = root->left; free(root); return temp; } else { struct TreeNode* temp = findMin(root->right); root->val = temp->val; root->right = deleteNode(root->right, temp->val); } } return root; } struct TreeNode* findMin(struct TreeNode* node) { while (node->left != NULL) node = node->left; return node; } ``` 以上代码,deleteNode函数使用递归实现了删除操作,findMin函数则是用来找到右子树的最小值。在deleteNode函数,我们首先判断了要删除节点是否为空,然后再根据二叉搜索树的性质来判断要删除节点在左子树还是右子树。如果要删除节点为叶子节点或只有一个子节点,则直接将其替换即可;如果要删除节点有两个子节点,则需要找到右子树的最小值(或左子树的最大值),将其赋值给被删除节点,并在右子树删除该最小值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值