(论文加源码)基于DEAP的脑电情绪识别(四分类)(数据增强和扩充)(五种模型作对比:一维 CNN,LSTM和二维和三维 CNN和带有LSTM的级联CNN)

本项目利用DEAP数据集进行四分类脑电情绪识别,对比1D CNN、LSTM及2D/3D CNN与级联CNN模型。1D CNN在原始EEG信号上实现75%加权准确度,展示深度学习模型处理原始数据的能力。数据增强和扩充提高模型性能。

论文及源码见个人主页:

https://download.csdn.net/download/qq_45874683/87660118

(论文加源码)基于DEAP的脑电情绪识别(四分类)(数据增强和扩充)(五种模型作对比:一维 CNN,LSTM和二维和三维 CNN和带有LSTM的级联CNN)

摘要:

       在本项目中,创建一个基于效价/唤醒模型的情绪识别或分类系统。脑电图(EEG)信号将主要用于创建该模型。不同的刺激在EEG信号中引发不同的反应。将使用不同类型的视频刺激及其相应的情绪效果,这是由EEG信号确定的。我们的目标是创建一个客观的系统,该系统可以确定视频在任何受试者中产生的反应类型,从而可以根据情绪类别对视频进行分类,这是使用效价/唤醒量表定义的。该项目将创建一个情绪分类系统和视频分类系统,即使用户能够使用观看视频的人的脑电图信号客观地确定视频的类型。这样的系统可能有利于创建本质上真正客观的推荐系统。该项目使用1D卷积神经网络模型进行分类。来自32个通道的EEG信号首先被减少到EEG通道中对称差异的14个通道,然后在这14个通道上应用一个模型,给出90%的加权准确度,用于将情绪分类为4类。


1.引言

       情绪是一种复杂的反应模式,涉及行为、经验和生理因素。它可以与个性、情绪或气质联系在一起。关于脑电图与情绪的关系,已经进行了广泛的研究,其中许多方法涉及研究人员手动观察脑电图信号,以识别与某种类型的情绪相对应的区域。最近,机器学习的应用使EEG中的情绪分类过程自动化已经得到了广泛的研究。在这个项目中,使用了DEAP数据集。音乐片段被用作视觉刺激,以从受试者那里获得不同类型的情绪。使用情绪分类的价唤醒模型将情绪分析并分类为4个区域。该项目利用原始脑电图信号进行一些预处理,对参与者对视频刺激的情绪反应进行分类。在该领域已经提出了许多深度学习模型,但大多数模型首先在EEG上应用离散小波变换或功率谱密度计算等变换,在该项目中,在原始EEG信号上应用1D CNN,实现了75%的加权精度,说明了深度学习模型的功率。


2.理论方面


2.1价唤醒模型

       拟建项目计划使用效价唤醒模型来更定量地描述情绪。在此模型中,。人们可以将每种情绪状态放置在具有唤醒和效价的二维平面上。分别作为x轴和y轴(如图1所示)。也可以将支配地位作为第三维度,以更深入地理解情绪状态。价态可以从不愉快到愉快,而唤醒可以从不活跃到活跃。效价唤醒空间可分为四个象限,低唤醒/低价、低唤醒/高价、高唤醒/低价和高唤醒/高价。价唤醒也可以使用线性回归来确定。


2.2.DEAP数据集

       DEAP数据集是通过以下方式获得的。一开始,研究人员使用了一种新颖的刺激选择方法,并收集了一大组视频片段。然后是1。提取实验中使用的视频片段的最小片段。之后进行主观测试以选择最合适的视频剪辑。然后,参与者参与数据集收集,并使用32个活性氯化银电极以512Hz的采样率记录他们的脑电图信号。之后,每个参与者根据效价和兴奋程度对其进行评分。为了最大限度地发挥所获得的情绪的强度,选择了最强的志愿者评分,同时选择了一种变化较小的视频类型。DEAP数据集是参与从生理信号中进行自发情绪分析的公开数据集的人数最多的数据集。它也是唯一一个使用音乐片段作为情感刺激的数据库。


2.3.脑电图与情绪的相关性

       可以使用脑电图技术来提供人类大脑的见解。由于脑电图有助于检测大脑中发生的最小调制,研究情绪变化脑电图被发现是一种有用的技术。脑电图可以检测各种情绪,例如平静、快乐、压力、悲伤、恐惧、惊讶等。Valence与脑电图信号有很强的相关性,并在所有频带中发现了相关性11。据观察,这种关联与试点研究中的观察结果不太一致。


2.4. 1D-CNN模型

       拟建项目在原始脑电图上使用CNN。如图3所示,在1D CNN中,在时间序列数据上传递具有一定宽度和高度的内核。在通过时间序列时,它执行卷积的简单阵列运算,以从EEG信号中学习判别特征。

       由于1D CNN的计算复杂度较低,它们不需要专门的硬件来实时训练和运行。训练它们更容易,并且与非常深的2D-CNN架构相比,它们在浅层架构中表现出了良好的性能。在每个CNN层中有许多参数需要决定,如内核大小、滤波器数量、步长、激活函数的选择等。


3.文献综述和发现的研究空白

       基于脑电信号的自动情绪识别和分类是最近的一个问题,主要是传统方法在其上的应用。已经提出了各种方法,如使用脑电信号中的功率谱密度并在其上应用朴素贝叶斯,或在任何其他手工特征上应用最近邻。

       离散小波变换也是一种用于从EEG信号中提取时频域特征的常用技术,在这些特征上已经应用了SVM等。

       一些方法从信号中提取统计特征,如它们的平均值、标准差、峰度等,并将模型应用于它们。总的来说,重点是EEG中存在的统计特征,研究人员将时间序列简化为这些特征,然后在这些特征上应用经典的机器学习模型。

       这些模型还专注于高价/低价或高唤醒/低唤醒的二元分类任务。已经为每一种情绪建立了单独的模型来对情绪进行分类。

       在这个项目中,这两个问题已经得到了处理。首先,与使用手工设计的特征相比,我们使用原始EEG信号来获得良好的分类精度。将1D-CNN应用于原始EEG信号以获得75%的准确度。其次,提出了一个多分类问题,而不是两个单独的二元分类问题。多类别分类是一个更具挑战性的问题,与之前的研究人员所做的2个类别相比,模型更难区分4个类别。


4. 提出的工作和方法

4.1. 提出的工作

表一:一维网络模型中使用的层和参数的描述

图4:用于对EEG信号进行分类的一维CNN模型的层数

       表1和图4详细显示了所提出的模型体系结构。所提出的模型是一维卷积神经网络。

       1D卷积层是输入后模型的第一层,它使用64的内核大小和128个滤波器,步长为1。在该层的输出端使用ReLU激活。在池大小为2的第一层的输出上进行一维最大池化。然后1D卷积被重复3次,滤波器的数量分别为64、16和4,内核大小分别为16、4和。这三种方法的步长都为1,激活度都为ReLU。应用池大小为2的另一个最大池层,然后将其输出展平。

       然后,将具有64个神经元的密集层与ReLU激活一起应用,作为模型的分类部分的一部分。速率为0.4的脱落用于正则化目的并防止神经元中的共同适应。最后,一个具有4个神经元的Softmax层将任务分类为4个类。

              进行超参数调整以获得表2中列出的参数。Adam优化器用于达到损失函数的最佳点。0.01的学习率与1e-3的衰减一起使用。使用了自定义衰减调度程序,代码中对此进行了描述。使用Softmax层的分类交叉熵进行分类。模型的准确性很高

表 2 : 用于获得模型最小Cross - Entropy Loss 的超参数


4.2. 方法

算法和流程图:

       在该项目中,目的是创建一个分类器,该分类器将使用受试者在观看视频刺激的试验期间大脑中产生的EEG信号对受试者的情绪进行分类。

a.分类器的输入实例(X):

       当在试验期间向受试者显示视频时,受试者产生EEG信号,并且这些信号是长度为8064的时间序列,因为采样是在128Hz下进行63秒。32个电极用于从受试者的大脑读取EEG信号。共有40个视频,每个视频都显示给实验中32名受试者中的每一个人。因此,对于每个受试者,生成与我们相关的40*32*8064的数据。

b.标签(Y):

       试验结束后,每个受试者对视频的唤醒程度和观看后的兴奋程度进行评分。评分采用1-9分制。为了从该数据生成标签,我们已经对标度的中间值(即5)上的值进行了阈值处理。这为我们提供了两个标签:高价和低价,以及类似的两个唤醒标签。

c.指标:

准确度:

       它只是对正确预测的实例数量相对于实例总数的度量。

 

 图5:情绪分类的流程图

       分类过程中遵循的各种步骤如图5所示。首先,总共读取了1280个实例;每个实例具有32个EEG通道的数据,每个通道的长度8064对应于63秒的数据记录。删除了前3秒的数据,保留了最后60秒的数据。数据已经被预处理以去除伪影,并被下采样到128Hz。

       现在,使用[4]中描述的脑电图放置位置,发现了一对对称相对的脑电图。从原始的32个样本中减去这些脑电图数据,得到每个样本14个时间序列。然后将这些样品标准化到0到1的范围,然后标准化以去除平均值并使标准偏差为1。

       在这种最小的预处理之后,EEG通道被划分为训练、验证和测试集,每个集有864、288和128个样本。然后使用1D CNN(其架构已经描述)从这些数据中学习并进行分类。图7描述了深度学习模型的算法。

 该模型是使用Keras API和Python语言的Tensorflow后端实现的。


5.结果和讨论

       本项目使用DEAP[6]数据集将情绪分为4类,即效价唤醒模型中的HV/HA、HV/LA、LV/HA、LV/LA。识别了14对EEG通道[4],并从每次试验的32个通道的输入中获得。总共1280个样本被分为训练集、验证集和测试集,大小分别为864、288和128。表1中描述的模型用于分类目的,在超参数调谐之后,获得并使用表2中存在的参数。

       图8和图9显示了准确度和损失与时期的关系图。曲线图表明,在75%的准确度之后,模型停止学习,并且准确度和损失停滞。该研究得出结论,对于给定类型的深度学习模型和给定的数据集,75%是使用原始EEG信号可获得的最高精度。这种准确性适用于4类分类问题,这比二进制分类要困难得多。[6]在EEG信号上使用特征提取方法给出的基线平均值为二元分类的58.3%,所提出的方法显著超过了这一点。

图8:准确率 v/s epoch的平滑图,蓝色为验证,橙色为训练。

 

 图9:损失v/s epoch的平滑图,蓝色为验证,橙色为训练。

 表3:所提方法的准确性比较

       大多数对DEAP数据集进行情感分类的研究都集中在使用复杂的特征工程方法,如离散小波变换、主成分分析、脑电信号的功率谱密度等,以及Naïve Bayes、支持向量机和KNN分类器等模型。所提出的方法不使用任何复杂的特征工程技术。1D-CNN被直接应用于原始EEG信号上。进行最小预处理,在EEG信号的前60秒,进行0-1范围的标准化,然后进行标准化以去除平均值并使标准偏差为1。该模型在原始EEG信号上的多类分类精度很高,而可比研究的精度仅为85%左右,在二元分类上也只有85%左右。

              似乎有必要进行特征增强,以增加可用于训练模型的样本数量。此外,还可以对模型的不同架构进行更多调整,以获得更好的精度。


6.环境要求

       谷歌实验室被用来做这个项目。数据集被上传到谷歌硬盘,谷歌Colab的GPU被用于在线训练模型。可以使用以下软件和硬件要求来复制实验设置。


6.1 软件需求


7.结论

       脑电信号的自动分类和识别是机器学习领域的一项艰巨任务。该项目提出了一个端到端的深度学习神经网络模型,用于将一个人通过音乐视频剪辑所经历的情绪分类为4类。1D-CNN用于此任务,它从原始EEG信号中学习特征。与[6]中58.3%的平均二进制分类准确率相比,所提出的方法在测试数据上实现了75%的加权准确率。该模型说明了深度学习模型从原始数据中学习特征的能力,而无需传统技术中的任何复杂特征提取。


论文及源码见个人主页:

https://download.csdn.net/download/qq_45874683/87660118

(论文加源码)基于DEAP的脑电情绪识别(四分类)(数据增强和扩充)(五种模型作对比:一维 CNN,LSTM和二维和三维 CNN和带有LSTM的级联CNN)

评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

脑电情绪识别

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值