(论文加源码)基于DEAP和MABHOB数据集的二分类脑电情绪识别(pytorch深度神经网络(DNN)和卷积神经网络(CNN))代码解析

论文解析见个人主页:

https://blog.csdn.net/qq_45874683/article/details/130000469?csdn_share_tail=%7B%22type%22%3A%22blog%22%2C%22rType%22%3A%22article%22%2C%22rId%22%3A%22130000469%22%2C%22source%22%3A%22qq_45874683%22%7D

(论文加源码)基于DEAP和MABHOB数据集的二分类脑电情绪识别(pytorch深度神经网络(DNN)和卷积神经网络(CNN))

论文和源码见个人主页:

https://download.csdn.net/download/qq_45874683/87667147

论文加源码)基于DEAP和MABHOB数据集的二分类脑电情绪识别(pytorch深度神经网络(DNN)和卷积神经网络(CNN)


整体结构:

1. dataset文件夹,数据集处理部分:执行论文讲述第3节中详细说明的所有预处理步骤的脚本

       1.1 prepare_deap.py:准备deap数据集

       1.2 prepare_mahnob.py:准备mahnob数据集

        1.3 reduce-dim.py:对输入EEG数据进行降维的实用函数。用于prepare deap.py和prepare mahnob.py

2. nn文件夹,数据集、模型、训练程序的脚本和配置

        datasets.py:读取数据集,PyTorch的类,用于读取DEAP和MAHNOB中的示例。

        models.py:构建模型,PyTorch的DNN和CNN架构模型,详见论文讲述第4节

        train-utils.py:包含train程序的代码

        train.py:启动train程序

        utils.py:函数调用,包含在其他脚本中使用的实用程序函数。

        configs:修改参数,包含模型、超参数、训练程序的YAML配置文件

3. statistical analysis文件夹:进行模型测试和结果分析,执行论文中使用的统计测试的脚本

        5x2cv test.py:执行5x2交叉验证配对t检验(见论文第5.2.2节)。

        confidence intervals.py:计算第5节结果的置信区间。

       kfold cross validation.py:执行kfold的交叉验证。用于进行5x2cv测试,但也可以单独使用  mcnemar测试.py:对预训练的DNN和CNN模型进行

        mcnemar test.py:对预训练的DNN和CNN模型进行McNemars测试(见论文第5.2.1节)

4. pretrained models文件夹,保存好的预训练模型:

包含4个预训练模型(DEAP上的DNN、DEAP上CNN、MAHNOB上DNN、MAHNOB上CNN),其结果在第5节的第一部分。


部分代码截图:

1. dataset文件夹,数据集处理部分:执行论文讲述第3节中详细说明的所有预处理步骤的脚本

       1.1 prepare_deap.py:准备deap数据集

        1.2 prepare_mahnob.py:准备mahnob数据集

        1.3 reduce-dim.py:对输入EEG数据进行降维的实用函数。用于prepare deap.py和prepare mahnob.py


2. nn文件夹,数据集、模型、训练程序的脚本和配置

        datasets.py:读取数据集,PyTorch的类,用于读取DEAP和MAHNOB中的示例。

        models.py:构建模型,PyTorch的DNN和CNN架构模型,详见论文讲述第4节

 

        train-utils.py:包含train程序的代码

        train.py:启动train程序

        utils.py:函数调用,包含在其他脚本中使用的实用程序函数。

        configs:修改参数,包含模型、超参数、训练程序的YAML配置文件


3. statistical analysis文件夹:进行模型测试和结果分析,执行论文中使用的统计测试的脚本

        5x2cv test.py:执行5x2交叉验证配对t检验(见论文第5.2.2节)。

        confidence intervals.py:计算第5节结果的置信区间。

       kfold cross validation.py:执行kfold的交叉验证。用于进行5x2cv测试,但也可以单独使用  mcnemar测试.py:对预训练的DNN和CNN模型进行

        mcnemar test.py:对预训练的DNN和CNN模型进行McNemars测试(见论文第5.2.1节)


4. pretrained models文件夹,保存好的预训练模型:

包含4个预训练模型(DEAP上的DNN、DEAP上CNN、MAHNOB上DNN、MAHNOB上CNN),其结果在第5节的第一部分。

论文解析见个人主页:

https://blog.csdn.net/qq_45874683/article/details/130000469?csdn_share_tail=%7B%22type%22%3A%22blog%22%2C%22rType%22%3A%22article%22%2C%22rId%22%3A%22130000469%22%2C%22source%22%3A%22qq_45874683%22%7D

(论文加源码)基于DEAP和MABHOB数据集的二分类脑电情绪识别(pytorch深度神经网络(DNN)和卷积神经网络(CNN))

 论文和源码见个人主页:

https://download.csdn.net/download/qq_45874683/87667147

论文加源码)基于DEAP和MABHOB数据集的二分类脑电情绪识别(pytorch深度神经网络(DNN)和卷积神经网络(CNN)

 

  • 0
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
脑电情绪识别是一种利用脑电图信号来判断人类情绪状态的方法。基于deap数据集脑电情绪识别可以通过构建生成对抗网络(GAN)和条件GAN(CGAN)模型来实现。 首先,我们需要使用python编程语言,使用PyTorch深度学习框架来构建模型。我们可以使用deap数据集,该数据集包含大量被试者的脑电信号和相应的情绪标签。可以通过数据集并预处理数据来准备训练和测试集。 接下来,我们可以构建GAN模型。GAN模型由生成器和判别器组成。生成器负责生成合成脑电图信号,以模拟真实的情绪状态。判别器则负责判断输入的脑电图信号是真实的还是合成的。通过对抗训练的方式,生成器和判别器相互竞争,最终生成器可以生成接近真实情绪状态的脑电图信号。 在构建CGAN模型时,我们可以使用情绪标签作为条件输入。这样生成器和判别器可以在生成和判别时考虑情绪标签的信息,提高情绪识别的性能。在训练过程中,我们可以将情绪标签与脑电图信号一起输入网络,使模型能够更好地学习情绪脑电图信号之间的关系。 最后,我们可以使用训练好的模型进行情绪识别。通过将待识别的脑电图信号输入到已经训练好的生成器或判别器中,模型可以预测出对应的情绪状态。可以根据模型输出的情绪标签进行进一步的分析和应用,比如情绪监测、情感识别等。 总之,基于deap数据集脑电情绪识别可以通过构建GAN和CGAN模型实现。这些模型可以帮助我们理解脑电信号与情绪之间的关系,并为情绪识别和相关领域的研究提供支持。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

脑电情绪识别

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值