文献笔记2Multi-source domain adaptation for decoder calibration of intracortical brain-machine interface

作者

这篇文章的发表时间是2020年10月27日,发表在IEEE Transactions on Neural Systems and Rehabilitation Engineering期刊上。通讯作者是Qiang Li,他所属的单位是华中科技大学光电子国家实验室。

思维导图

总结

本文介绍了一种基于特征选择的迁移学习方法,用于解决脑机接口解码器校准和高计算负担的问题。研究结果表明,该方法在减少历史数据和当前数据之间的差异的同时,实现了优越的解码性能。与其他校准方案相比,该方法所需的当前样本数量、特征数量和神经记录通道数量都较少。此外,该方法采用了特征选择而不是神经元选择,前者的平均解码准确率比后者高出6.6%。研究还探讨了SUTL方法选择的特征的性质,并评估了应用SUTL方法后历史数据和当前数据之间的差异。总体而言,该方法在减少解码器校准时间和计算负担方面取得了显著的效果

Introduction

本文的Introduction首先指出了脑机接口(Brain-Machine Interface,BMI)中两个具有挑战性的问题:解码器校准所需的时间和高维神经记录所带来的计算负担。解码器校准是指通过训练解码器来将神经信号转化为对应的动作或意图,而这需要大量的数据样本。然而,由于神经信号的非稳态性,每天都需要重新校准解码器,这导致了大量的时间和劳动成本。另一方面,高维神经记录意味着需要大量的通道来记录神经信号,这增加了计算负担和能耗。

接着,文章提到了已经提出的解码器校准优化方法和神经元选择方法,但很少有方法能够同时解决这两个问题。因此,本文引出了研究选题:如何通过一种方法同时解决解码器校准和计算负担的问题。

为了解决这个问题,本文提出了一种基于特征选择的迁移学习方法,称为SUTL(Symmetrical-Uncertainty-Based Transfer Learning)。该方法结合了迁移学习和特征选择,通过使用对称不确定性来定量衡量特征选择的三个指标:稳定性、重要性和冗余性。通过选择稳定的特征,可以减小历史数据和当前数据之间的差异,有效利用历史数据进行解码器校准,从而减少对当前数据的需求。在选择重要和非冗余的特征之后,只需要工作在这些特征对应的通道上,从而减少了计算负担。

为了验证SUTL方法的有效性,本文对从两只猕猴记录的神经数据进行了测试,以解码手臂的位置或抓握手势。

研究结果与发现

  1. SUTL方法能够同时解决解码器校准和计算负担的问题。通过结合迁移学习和特征选择,SUTL方法能够减小历史数据和当前数据之间的差异,有效利用历史数据进行解码器校准,从而减少对当前数据的需求。同时,通过选择重要和非冗余的特征,SUTL方法能够减少解码所需的特征数量和神经记录通道数量,从而降低计算负担和能耗。

  2. 在SUTL方法中,特征选择比神经元选择更有效。通过比较特征选择和神经元选择在SUTL方法中的表现,发现特征选择能够实现更好和更稳定的解码性能。

  3. SUTL方法在解码性能方面优于其他校准方案。与其他常用的校准方案相比,SUTL方法在解码性能方面表现出色,同时只需要较少的当前样本、特征数量和神经记录通道数量。

  4. SUTL方法能够有效减小历史数据和当前数据之间的差异。通过可视化和定量评估,证明了SUTL方法能够有效减小历史数据和当前数据之间的差异,从而提高解码性能。

  5. SUTL方法选择的特征具有良好的泛化能力。通过比较训练数据和测试数据的解码准确率以及评估选定特征之间的重叠度,证明了SUTL方法选择的特征具有较好的泛化能力和稳定性。

  6. SUTL方法选择的特征具有一定的空间和时间特性。通过分析选择的特征在不同脑区和解码时间段的分布,发现M1和PPC在运动执行过程中起到了重要的作用,而S1在抓握手势解码中也起到了重要的作用。

SUTL方法在解码器校准和计算负担方面取得了显著的效果,并提供了一种新的方法和思路来解决BMI中的相关问题。这些发现和成果对于推动BMI在临床研究中的发展具有重要意义。

数据

本文使用了SUTL方法来分析和筛选研究数据。SUTL方法结合了迁移学习和特征选择,通过量化特征的稳定性、重要性和冗余性来选择合适的特征。具体的分析方法和筛选标准如下:

  • 1. 分析方法

SUTL方法使用对称不确定性(SU)来量化特征之间的相关性。首先,使用SU来衡量特征在历史数据和当前数据之间的稳定性。然后,根据稳定性选择特征,减小历史数据和当前数据之间的差异。接下来,根据特征与数据标签之间的相关性选择重要特征。最后,考虑特征之间的冗余性,选择重要且非冗余的特征。通过这些步骤,得到最终的特征子集。

  • 2. 筛选标准

特征的筛选基于对称不确定性(SU)的量化。首先,根据特征在历史数据和当前数据之间的稳定性选择特征。在选择稳定特征时,本文选择了前一半的特征作为稳定特征。然后,根据特征与数据标签之间的相关性选择重要特征。在选择重要特征时,同样选择了前一半的特征。最后,考虑特征之间的冗余性,选择重要且非冗余的特征。

通过这些分析方法和筛选标准,SUTL方法能够有效地减小历史数据和当前数据之间的差异,提高解码性能,并减少计算负担。这些方法和标准为研究人员提供了一种有效的方式来分析和筛选研究数据,从而推动脑机接口研究的发展。

方法与模型

本文的方法主要涉及:

1. SUTL方法:本文引入了SUTL(基于特征选择的迁移学习)方法来解决解码器校准和计算负担问题。SUTL方法结合了迁移学习和特征选择,通过量化特征的稳定性、重要性和冗余性来选择合适的特征子集。

2. 特征选择:本文使用了对称不确定性(SU)来量化特征之间的相关性。首先,根据特征在历史数据和当前数据之间的稳定性选择特征。然后,根据特征与数据标签之间的相关性选择重要特征。最后,考虑特征之间的冗余性,选择重要且非冗余的特征。

3. 解码器校准和测试方案:本文使用支持向量机(SVM)作为解码器,并使用网格搜索方法来选择最佳的惩罚参数和核参数。为了评估SUTL方法的性能,本文还提出了其他五种解码器校准和测试方案进行比较。

4. 数据分析和评估:本文使用了多种方法来评估SUTL方法的性能。包括解码准确率的比较、解码器校准时间的量化评估、历史数据和当前数据之间差异的评估以及所选特征的一般化能力的评估。

本文的方法部分使用了SUTL方法进行特征选择和解码器校准,通过量化特征的稳定性、重要性和冗余性来选择合适的特征子集。同时,还使用了支持向量机作为解码器,并提出了其他解码器校准和测试方案进行比较和评估。这些方法为研究人员提供了一种有效的方式来分析和筛选研究数据,并提高脑机接口的解码性能。

讨论与不足

1. 方法的有效性:本文通过实验证明了SUTL方法在解码器校准和解码性能方面的有效性。与其他解码器校准方案相比,SUTL方法在减少解码器校准时间和计算负担的同时,能够实现更好的解码性能。此外,本文还证明了特征选择在SUTL方法中的优越性,相比于神经元选择,特征选择能够实现更好的性能。

2. 数据分析和评估:本文通过多种方法对SUTL方法进行了评估。通过比较解码准确率、解码器校准时间和历史数据与当前数据之间的差异,证明了SUTL方法的优越性。此外,通过评估所选特征的一般化能力,证明了SUTL方法在不同数据集之间具有良好的一般化能力。

3. 结果与已报道的一致性:本文的结果与已报道的一致,证明了SUTL方法的有效性和优越性。与其他研究相比,SUTL方法能够在减少解码器校准时间和计算负担的同时,实现更好的解码性能。

4. 不足和待解决的问题:本文的方法和结果仍存在一些不足和待解决的问题。首先,SUTL方法在选择稳定特征时,使用了较少的当前样本,这可能会导致稳定性测量受到样本数量的影响。其次,SUTL方法的一般化能力需要进一步评估,特别是在不同实验条件下的一般化能力。此外,本文的研究仅涉及了两只猴子的数据,需要进一步扩大样本规模和验证方法的适用性。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值