文献笔记1-《Delving into Temporal-SpectralConnections in Spike-LFP Decodingby Transformer Networks》

基本信息

《Delving into Temporal-SpectralConnections in Spike-LFP Decodingby Transformer Networks》:这篇文章发表于2023年,期刊信息为CCIS 1692。通讯作者是Huaqin Sun,所属单位是浙江大学的求是学院。Keywords:Brain-computer interfaces·Spike-LFP fusion·Neuraldecoding

思维导图

总结

本文提出了一种名为TSNet的模型,通过Transformer网络学习脑电信号中的动作电位和局部场电位之间的时空连接。实验结果表明,TSNet可以动态地调整连接权重以适应信号的变化,从而提高神经解码的准确性和鲁棒性。研究发现,融合动作电位和局部场电位可以显著提高神经解码的性能,TSNet模型在处理时间偏移和噪声方面表现出较好的鲁棒性。与已有研究相比,TSNet通过学习动态的时空连接权重,能够更好地融合动作电位和局部场电位,从而提高神经解码的准确性和鲁棒性。然而,本文的研究结果与一些先前的研究存在一些差异,这可能是由于不同的实验条件和数据处理方法所导致的。此外,本文也指出了一些不足之处,例如对于信号丢失和噪声的处理仍有改进的空间。

Introduction

文章的Introduction部分引出了研究选题,即通过脑电信号解码来实现与外部设备的直接通信。文章指出,脑电信号中的动作电位和局部场电位是两种常见的信号类型,它们在时间和频率域上具有互补性。然而,现有的研究大多集中在单一类型的信号上,并忽视了两种信号之间的相互作用。因此,本研究旨在探索动作电位和局部场电位之间的时空连接,以提高神经解码的鲁棒性。

研究结果发现

通过融合动作电位和局部场电位可以提高神经解码的准确性和鲁棒性;TSNet模型可以动态地调整时空连接权重,以适应信号的变化;TSNet在处理时间偏移和噪声方面表现出较好的鲁棒性。

讨论与不足

与已有研究一致的是,融合动作电位和局部场电位可以提高神经解码的性能。然而,本文的研究结果与一些先前的研究存在一些差异,这可能是由于不同的实验条件和数据处理方法所导致的。此外,本文也指出了一些不足之处,例如对于信号丢失和噪声的处理仍有改进的空间。

方法与模型

本文的方法部分详细介绍了TSNet模型的构建和训练过程。TSNet是一种基于Transformer网络的模型,用于学习动作电位和局部场电位之间的时空连接。下面将详细介绍本文中使用的方法、框架和模型。

  • 方法:

    • 时域自注意力组件:通过Transformer网络中的自注意力机制,学习动作电位序列中不同时间点之间的关系。通过线性变换将动作电位序列转换为查询(Q)、键(K)和值(V)的表示,然后计算它们之间的相似度,得到时域的注意力特征。
    • 频域自注意力组件:类似于时域自注意力组件,但是针对局部场电位序列进行操作,学习不同频段之间的关系。
    • 时频交叉注意力组件:将时域和频域的注意力特征进行交叉注意力操作,建模动作电位和局部场电位之间的时空连接。通过线性变换将时域注意力特征转换为查询(Q)和值(V)的表示,将频域注意力特征转换为键(K)的表示,然后计算它们之间的相似度,得到时频交叉的注意力特征。
    • 分类层:将时频交叉注意力特征输入到一个多层感知机(MLP)中,进行任务相关的表示学习和分类。
  • 框架:

    • Transformer网络:本文使用Transformer网络作为TSNet的基础框架。Transformer网络是一种基于自注意力机制的神经网络,广泛应用于自然语言处理和计算机视觉等领域。它能够学习序列数据中的长距离依赖关系,适用于处理时序数据。
  • 模型:

    • TSNet:TSNet是本文提出的模型,用于学习动作电位和局部场电位之间的时空连接。TSNet包含时域自注意力组件、频域自注意力组件、时频交叉注意力组件和分类层。通过学习动作电位和局部场电位之间的时空连接,TSNet能够提高神经解码的准确性和鲁棒性。

数据

本文涉及的研究数据是脑电信号。文章对脑电信号进行了预处理和特征提取,包括滤波、峰值检测和时频分析等。

研究数据是通过对一名患者进行临床实验获得的。下面将详细介绍数据的分析和筛选方法以及筛选标准。

  • 数据分析:

  1.    - 数据采集:患者被植入了两个96通道的Utah颅内微电极阵列,用于记录神经信号。原始神经信号使用Neuroport系统进行采样,采样频率为30 kHz。
  2.    - 数据处理:对原始神经信号进行滤波和处理,得到动作电位和局部场电位信号。对动作电位信号进行阈值检测,得到动作电位序列。对局部场电位信号进行频谱分析,得到频域特征。
  3.    - 数据分割:将动作电位和局部场电位信号分割为不重叠的时间窗口,得到动作电位和局部场电位的时域特征。
  • 数据筛选:

  1.    - 神经元选择:根据神经元的响应变化选择对特定运动任务有强烈响应的神经元。选择那些在“Go”期间的响应变化较大的神经元作为分析对象。
  2.    - 数据标准化:对选定的神经元的响应进行最小-最大归一化,将响应值转换为0到1之间的小数。
  3.    - 运动持续时间估计:通过分析神经元的响应,估计运动意图的持续时间。根据神经元的响应变化,确定运动意图的开始和结束时间。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值