【蓝桥杯】ALGO-116 最大的算式 动态规划 资源分配类型(最大乘积)

资源限制
时间限制:1.0s 内存限制:256.0MB
问题描述
  题目很简单,给出N个数字,不改变它们的相对位置,在中间加入K个乘号和N-K-1个加号,(括号随便加)使最终结果尽量大。因为乘号和加号一共就是N-1个了,所以恰好每两个相邻数字之间都有一个符号。例如:
  N=5,K=2,5个数字分别为1、2、3、4、5,可以加成:
  12(3+4+5)=24
  1*(2+3)(4+5)=45
  (1
2+3)*(4+5)=45
  ……
输入格式
  输入文件共有二行,第一行为两个有空格隔开的整数,表示N和K,其中(2<=N<=15, 0<=K<=N-1)。第二行为 N个用空格隔开的数字(每个数字在0到9之间)。
输出格式
  输出文件仅一行包含一个整数,表示要求的最大的结果
样例输入
5 2
1 2 3 4 5
样例输出
120
样例说明
(1+2+3)45=120

#include<iostream>
#include<algorithm>
using namespace std;
#define ll long long
//ALGO-116	最大的算式	动态规划 资源分配类型(最大乘积)
int sum[20];
ll dp[20][20];

int main()
{
	int n, k, tmp;
	cin>>n>>k;
	for(int i = 1; i <= n; i++)
	{
		cin>>tmp;
		sum[i] = sum[i - 1] + tmp;
	}
	for(int i = 1; i <= n; i++)
		dp[i][0] = sum[i];
	for(int i = 2; i <= n; i++)
		for(int j = 1; j <= i - 1 && j <= k; j++)
			for(int l = 2; l <= i + 1; l++)
				dp[i][j] = max(dp[i][j], dp[l - 1][j - 1] * (sum[i] - sum[l - 1]));
	cout<<dp[n][k];
	return 0;
}

参考博客
【注】dp前几个模拟画图找出状态转移公式

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_碗碗儿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值