动态规划(Dynamic Programming,简称DP)是一种算法思想,它是求解一类最优化问题的有效工具。它通过将原问题分解为若干子问题,逐个求解子问题的最优解,从而得到原问题的最优解。动态规划算法的核心思想是“最优子结构”和“重叠子问题”。
最优子结构:指问题的最优解由其子问题的最优解组合而成。
重叠子问题:指在问题分解过程中,许多子问题的解是重复的。
动态规划算法的基本步骤:
-
确定状态:将原问题分解成若干个子问题,每个问题的状态即为子问题的解。
-
状态转移方程:根据子问题之间的关系,推导出子问题之间的转移方程,即求解状态的递推式。
-
初始状态:确定边界状态,也就是最小的子问题的解,即初始状态。
-
计算最优值:按照状态转移方程,从初始状态开始递推计算出每个子问题的最优解。
-
求解原问题:根据子问题之间的关系和最优解,反推出原问题的最优解。
下面通过两个例子来说明动态规划算法。
例1:背包问题
有一个容量为W的背包,一共有n个物品,每个物品有自己的重量w和价值v。要求在不超过背包容量的情况下,选择一些物品放到背包中,使得背包中物品的总价值最大。
状态转移方程为:dp[i][j]表示前i个物品放入容量为j的背包中所能获得的最大价值,那么:
dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]]+v[i])
其中,dp[i-1][j]表示不选第i个物品,