python 经典算法之--动态规划算法(Dynamic Programming Algorithm)

动态规划(Dynamic Programming,简称DP)是一种算法思想,它是求解一类最优化问题的有效工具。它通过将原问题分解为若干子问题,逐个求解子问题的最优解,从而得到原问题的最优解。动态规划算法的核心思想是“最优子结构”和“重叠子问题”。

最优子结构:指问题的最优解由其子问题的最优解组合而成。

重叠子问题:指在问题分解过程中,许多子问题的解是重复的。

动态规划算法的基本步骤:

  1. 确定状态:将原问题分解成若干个子问题,每个问题的状态即为子问题的解。

  2. 状态转移方程:根据子问题之间的关系,推导出子问题之间的转移方程,即求解状态的递推式。

  3. 初始状态:确定边界状态,也就是最小的子问题的解,即初始状态。

  4. 计算最优值:按照状态转移方程,从初始状态开始递推计算出每个子问题的最优解。

  5. 求解原问题:根据子问题之间的关系和最优解,反推出原问题的最优解。

下面通过两个例子来说明动态规划算法。

例1:背包问题

有一个容量为W的背包,一共有n个物品,每个物品有自己的重量w和价值v。要求在不超过背包容量的情况下,选择一些物品放到背包中,使得背包中物品的总价值最大。

状态转移方程为:dp[i][j]表示前i个物品放入容量为j的背包中所能获得的最大价值,那么:

dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]]+v[i])

其中,dp[i-1][j]表示不选第i个物品,dp[i-1][j-w[i]]+v[i]表示选择第i个物品。

初始状态为dp[0][j] = 0和dp[i][0] = 0。

完整代码如下:

def knapsack(W, w, v):
    n = len(w)
    dp = [[0 for _ in range(W+1)] for _ in range(n+1)]
    for i in range(1, n+1):
        for j in range(1, W+1):
            if j < w[i-1]:
                dp[i][j] = dp[i-1][j]
            else:
                dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i-1]]+v[i-1])
    return dp[n][W]

例2:最长公共子序列问题

给定两个字符串s1和s2,求它们的最长公共子序列。

状态转移方程为:dp[i][j]表示s1前i个字符和s2前j个字符的最长公共子序列长度,那么:

当s1[i-1] == s2[j-1]时,dp[i][j] = dp[i-1][j-1] + 1;

当s1[i-1] != s2[j-1]时,dp[i][j] = max(dp[i-1][j], dp[i][j-1])。

初始状态为dp[i][0] = 0和dp[0][j] = 0。

完整代码如下:

def longest_common_subsequence(s1, s2):
    m, n = len(s1), len(s2)
    dp = [[0 for _ in range(n+1)] for _ in range(m+1)]
    for i in range(1, m+1):
        for j in range(1, n+1):
            if s1[i-1] == s2[j-1]:
                dp[i][j] = dp[i-1][j-1] + 1
            else:
                dp[i][j] = max(dp[i-1][j], dp[i][j-1])
    return dp[m][n]

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值