目录标题
MIMO
一、容量
1.MISO和SIMO都只能发送相同数据,所以相比于SISO容量没有提升,但提高了通信成功率,属于发射分集。
2.如图为2×2MIMO,容量是SISO的两倍
多输入多输出:
r=Hs+n
\textbf{r=Hs+n}
r=Hs+n
3.信道传输矩阵和预编码
预编码后的矩阵:
其中秩的大小指示了信道的相关性
二、MIMO三大技术
1.波束赋型
波束赋型让波束的能量向指定的方向集中,不仅可以增强覆盖距离,还可以降低相邻波束间的干扰,让更多的用户可以同时通信,提升小区容量。也就是说,它将分集和复用的优点集于一身。
实现的方式包括模拟、数字、混合波束赋性
2.传输分集
利用天线阵元的不相关性,发射和接收同一个数据流,提高链路质量。
实现的技术为空时编码STC。在空间域的发射分集和时域的信道编码相结合进行联合编码。STC的编码技术又分为空时格码(STTC:Space-Time Trellis Code )和空时分组码(STBC:Space-Time Block Code)
3.空间复用
在不同的天线,同一的频点上传输多个独立的数据流
SVD分解MIMO
H矩阵为n×m,
当
n
<
m
n<m
n<m时,(接收天线 < 发射天线)
当
n
>
m
n>m
n>m时,
H的相关矩阵:
对角线上的数值为RHH的特征值,矩阵U的列向量为特征向量。
信道矩阵分解
现在对发送信息
s
′
s'
s′进行编码,得到每个天线的发射信号
s
s
s:
s
=
V
s
′
s=Vs'
s=Vs′
则:
此时通过信道估计获取信道矩阵,在收到信号后,等式两端左乘
U
H
U^{H}
UH:
∑
\sum
∑为对角矩阵
,意味着,经过变换后的MIMO系统等价于多个互不干扰的并行信道。
引用一位网友的话“SVD是信道不变的时候理论上容量最大的预编码方法
”
MIMO预编码
首先,矩阵的秩和其奇异值(奇异值为 ∑ \sum ∑的对角线元素,等于特征值的平方根)的关系:秩就是不为0的奇异值的个数。
信道矩阵的秩就是能够同时发送的数据的个数,每一个数据叫作一个流(stream),也叫作一个层(layer),每个流可以单独进行编码调制。
使用一个编码矩阵C对流数据进行编码,从而控制流的个数:
当矩阵的秩为r,则可以同时发送r个信息数据,则s的维度是
r
r
r×1。s被矩阵C编码,C的维度为
m
×
r
m×r
m×r,故最后得到
m
×
1
m×1
m×1的数据,映射到m根天线上。
C的理想选择是SVD的V矩阵当中最大的前r个奇异值对应的列组成的矩阵
。
码本实例:(注意维度)
SVD与MIMO信号检测ZF/MMSE
1. SVD局限性
- 单用户专用:SVD通过分解信道矩阵实现空间子信道独立,适用于单用户点对点MIMO(如基站与单一终端通信)。
- 多用户失效:在多用户MIMO下行链路中,用户间信道无法直接正交化,SVD无法消除用户间干扰(IUI),需依赖ZF/MMSE预编码或接收端检测。
MIMO信号检测ZF/MMSE的普适性:
- 多用户场景:ZF/MMSE通过矩阵运算直接抑制干扰,适用于多用户MIMO(如基站同时服务多个用户)。
- 上下行链路通用:ZF/MMSE既可用于发送端预编码(下行),也可用于接收端信号检测(上行),灵活性更高。
两者应用场景的示例:
- 单用户MIMO:基站使用SVD预编码将数据流映射到信道主特征模式,接收端仅需简单匹配滤波。
- 多用户MIMO下行:基站采用ZF预编码消除用户间干扰,确保各用户信号正交。
2. 复杂度的权衡
SVD的计算开销:
-
SVD需要对信道矩阵进行全分解,计算复杂度为 O ( N 3 ) O(N^3) O(N3)( N N N为天线数),在大规模MIMO或动态信道中实时更新困难。
-
适用于静态或准静态信道(如固定无线接入),难以支持高移动性场景。
-
ZF/MMSE的轻量化:
- ZF仅需矩阵求逆(复杂度 O ( N 3 ) O(N^3) O(N3)),但可通过迭代算法或近似方法(如Neumann级数展开)降低计算量。
- MMSE通过正则化处理(引入噪声项)减少矩阵病态问题,实际中常与低复杂度近似结合。
- 更适合实时系统:如5G基站需在毫秒级更新预编码矩阵,ZF/MMSE更易实现。
案例对比:
算法 | 计算复杂度 | 适用场景 |
---|---|---|
SVD | O ( N 3 ) O(N^3) O(N3) | 单用户、静态信道 |
ZF | O ( N 3 ) O(N^3) O(N3)(可优化) | 多用户、动态信道 |
MMSE | O ( N 3 ) O(N^3) O(N3)(可优化) | 噪声显著的多用户场景 |
3. 信道信息的敏感性
-
SVD对CSI精度的依赖:
- SVD要求发送端掌握完美信道状态信息(CSI),若存在估计误差或反馈延迟,子信道独立性被破坏,性能急剧下降。
- 实际系统中,CSI通常存在量化误差、时延和多普勒频移影响,限制了SVD的实用性。
-
ZF/MMSE的鲁棒性:
- ZF/MMSE可通过正则化(MMSE)或鲁棒设计(如基于误差统计的预编码)缓解不完美CSI的影响。
- 对信道误差的容忍度更高,尤其适合TDD系统(通过信道互易性获取CSI)或FDD系统(有限反馈)。
实验数据:
- 在CSI误差为-20 dB时,SVD预编码的容量损失可达30%,而MMSE预编码仅损失10%。
4. 噪声与干扰的权衡
-
SVD的噪声放大问题:
- SVD将信号功率集中在主特征模式,但弱特征模式对应的子信道信噪比(SNR)极低,可能成为容量瓶颈。
- 若发射功率不足或信道条件差(如深衰落),部分子信道无法有效利用。
-
ZF/MMSE的主动干扰管理:
- ZF完全消除干扰但放大噪声(尤其在信道矩阵病态时),MMSE在干扰抑制与噪声增强间取得平衡。
- 可通过功率分配算法(如注水算法)优化性能,适应不同信噪比环境。
数学对比:
- SVD容量: C = ∑ i = 1 r log 2 ( 1 + P i σ i 2 N 0 ) C = \sum_{i=1}^r \log_2(1 + \frac{P_i \sigma_i^2}{N_0}) C=∑i=1rlog2(1+N0Piσi2),其中 σ i \sigma_i σi为奇异值, P i P_i Pi为注水功率分配。
- ZF容量: C = log 2 det ( I + P N 0 ( H H H ) − 1 ) C = \log_2 \det\left(\mathbf{I} + \frac{P}{N_0} (\mathbf{H}^H \mathbf{H})^{-1}\right) C=log2det(I+N0P(HHH)−1),受限于矩阵条件数。
- MMSE容量:在ZF基础上引入正则化项,提升病态信道下的稳定性。
5. 系统架构与标准化需求
-
标准兼容性:
- 5G/6G等标准中,多用户MIMO是核心场景,ZF/MMSE预编码已被广泛采纳(如LTE的TM8/TM9模式)。
- SVD缺乏对多用户干扰的直接解决方案,难以满足标准化需求。
-
混合架构支持:
- 大规模MIMO常采用混合预编码(数字+模拟),SVD需全数字基带处理,而ZF/MMSE可与模拟波束成形结合,降低硬件复杂度。
- 毫米波系统:由于射频链限制,常采用低复杂度预编码(如基于角度的匹配),而非SVD。
6. 总结:为何需要ZF/MMSE?
维度 | SVD预编码 | ZF/MMSE |
---|---|---|
适用场景 | 单用户MIMO,静态信道 | 多用户MIMO,动态信道 |
复杂度 | 高(矩阵分解) | 中(矩阵求逆,可优化) |
CSI要求 | 严格需要完美CSI | 容忍部分CSI误差 |
干扰管理 | 无多用户干扰处理能力 | 主动消除干扰(ZF)或平衡干扰与噪声(MMSE) |
标准化支持 | 有限(主要用于理论分析) | 广泛集成于5G/6G标准 |
- 核心结论:
- SVD是单用户MIMO的理论最优解,但实际系统需面对多用户干扰、动态信道、硬件限制等问题,ZF/MMSE提供了更实用、灵活的解决方案。
- 两者并非替代关系,而是互补:SVD用于优化单用户链路,ZF/MMSE解决多用户干扰与工程实现难题。
在发送端采用ZF(迫零)预编码后,接收端是否还需要信号检测?
-
干扰消除
ZF预编码的核心目标是通过预补偿信道矩阵的逆,在发送端主动消除用户间及数据流间的干扰。若信道状态信息(CSI)准确且系统无噪声,理论上接收信号已无干扰,此时接收端无需额外信号检测,可直接解调符号(如QAM解调)。 -
噪声影响
实际系统中,噪声(如AWGN)无法通过预编码消除。接收端仍需进行基础处理(例如信号放大、滤波、解调等),但无需复杂检测算法(如MMSE、SIC等)来对抗干扰。 -
应用场景差异
- 单用户MIMO:ZF预编码完全消除流间干扰,接收端仅需解调。
- 多用户MIMO:若用户间同步完美且信道估计理想,同样可跳过检测步骤;但存在误差时,可能需简单均衡处理。
总结:采用ZF预编码后,接收端通常不需要传统意义上的“信号检测”(即干扰抑制操作),但仍需完成解调等基础步骤以恢复原始数据。两者分工明确——预编码解决干扰,接收端应对噪声。