MIMO进阶

一、信道建模

在这里插入图片描述
在这里插入图片描述

二、MU-MIMO

MU-MIMO(Multi-User MIMO)是一种无线通信技术,允许基站(BS)同时向多个用户设备(UE)发送数据,从而提高系统容量和频谱效率。以下是 MU-MIMO 的数学建模过程,涵盖从发送信号到接收信号的完整链路。


1. 系统模型

假设:

  • 基站(BS) 有 N t N_t Nt 根发射天线。
  • K 个用户(UE),每个用户有 N r , k N_{r,k} Nr,k 根接收天线(通常 N r , k = 1 N_{r,k} = 1 Nr,k=1 2 2 2)。
  • 信道矩阵 H k ∈ C N r , k × N t \mathbf{H}_k \in \mathbb{C}^{N_{r,k} \times N_t} HkCNr,k×Nt 表示 BS 到第 k k k 个用户的信道。
  • 预编码矩阵 W k ∈ C N t × d k \mathbf{W}_k \in \mathbb{C}^{N_t \times d_k} WkCNt×dk 用于调整发射信号( d k d_k dk 是第 k k k 个用户的数据流数)。
  • 发送信号 x k ∈ C d k × 1 \mathbf{x}_k \in \mathbb{C}^{d_k \times 1} xkCdk×1 是第 k k k 个用户的数据符号(如 QAM 符号)。
  • 噪声 n k ∈ C N r , k × 1 \mathbf{n}_k \in \mathbb{C}^{N_{r,k} \times 1} nkCNr,k×1 是加性高斯白噪声(AWGN), n k ∼ C N ( 0 , σ 2 I ) \mathbf{n}_k \sim \mathcal{CN}(0, \sigma^2 \mathbf{I}) nkCN(0,σ2I)

2. 发送端处理

(1) 预编码(Precoding)

BS 对每个用户的数据进行 线性预编码(如 Zero-Forcing, MMSE),以减少用户间干扰(Inter-User Interference, IUI)。
总发送信号:
s = ∑ k = 1 K W k x k \mathbf{s} = \sum_{k=1}^K \mathbf{W}_k \mathbf{x}_k s=k=1KWkxk
其中:

  • W k \mathbf{W}_k Wk 是第 k k k 个用户的预编码矩阵。
  • x k \mathbf{x}_k xk 是第 k k k 个用户的数据符号。

(2) 功率约束

总发射功率受限:
E [ ∥ s ∥ 2 ] ≤ P max \mathbb{E}[\|\mathbf{s}\|^2] \leq P_{\text{max}} E[s2]Pmax
其中 P max P_{\text{max}} Pmax 是最大发射功率。


3. 信道传输

信号经过无线信道后,第 k k k 个用户的接收信号:
y k = H k s + n k \mathbf{y}_k = \mathbf{H}_k \mathbf{s} + \mathbf{n}_k yk=Hks+nk
代入 s \mathbf{s} s
y k = H k W k x k + ∑ j ≠ k H k W j x j + n k \mathbf{y}_k = \mathbf{H}_k \mathbf{W}_k \mathbf{x}_k + \sum_{j \neq k} \mathbf{H}_k \mathbf{W}_j \mathbf{x}_j + \mathbf{n}_k yk=HkWkxk+j=kHkWjxj+nk
其中:

  • 第一项 H k W k x k \mathbf{H}_k \mathbf{W}_k \mathbf{x}_k HkWkxk 是 期望信号。
  • 第二项 ∑ j ≠ k H k W j x j \sum_{j \neq k} \mathbf{H}_k \mathbf{W}_j \mathbf{x}_j j=kHkWjxj 是 用户间干扰(IUI)。
  • 第三项 n k \mathbf{n}_k nk 是 噪声。

4. 接收端处理

(1) 检测(Detection)

用户 k k k 使用 检测矩阵 G k \mathbf{G}_k Gk(如 MMSE 检测)来恢复数据:
x ^ k = G k y k \hat{\mathbf{x}}_k = \mathbf{G}_k \mathbf{y}_k x^k=Gkyk
其中:

  • G k \mathbf{G}_k Gk 可以是 迫零(ZF)、最小均方误差(MMSE) 或 最大似然(ML) 检测器。

(2) 信干噪比(SINR)

用户 k k k 的 SINR(Signal-to-Interference-plus-Noise Ratio):
SINR k = ∥ H k W k ∥ 2 ∑ j ≠ k ∥ H k W j ∥ 2 + σ 2 \text{SINR}_k = \frac{\|\mathbf{H}_k \mathbf{W}_k\|^2}{\sum_{j \neq k} \|\mathbf{H}_k \mathbf{W}_j\|^2 + \sigma^2} SINRk=j=kHkWj2+σ2HkWk2
其中:

  • 分子是 期望信号功率。
  • 分母是 干扰 + 噪声功率。

(3) 可达速率(Achievable Rate)

用户 k k k 的 香农容量(Shannon Capacity):
R k = log ⁡ 2 ( 1 + SINR k ) R_k = \log_2 \left( 1 + \text{SINR}_k \right) Rk=log2(1+SINRk)


5. 预编码方法

(1) 迫零预编码(Zero-Forcing, ZF)

目标:完全消除用户间干扰(IUI)。
预编码矩阵:
W = H H ( H H H ) − 1 \mathbf{W} = \mathbf{H}^H (\mathbf{H} \mathbf{H}^H)^{-1} W=HH(HHH)1
其中 H = [ H 1 T , H 2 T , … , H K T ] T \mathbf{H} = [\mathbf{H}_1^T, \mathbf{H}_2^T, \dots, \mathbf{H}_K^T]^T H=[H1T,H2T,,HKT]T 是 联合信道矩阵。

缺点:

  • 噪声增强(尤其在信道条件差时)。
  • 需要 N t ≥ ∑ k = 1 K N r , k N_t \geq \sum_{k=1}^K N_{r,k} Ntk=1KNr,k(天线数足够)。

(2) 正则化迫零(Regularized ZF, RZF)

改进 ZF,加入正则化项:
W = H H ( H H H + α I ) − 1 \mathbf{W} = \mathbf{H}^H (\mathbf{H} \mathbf{H}^H + \alpha \mathbf{I})^{-1} W=HH(HHH+αI)1
其中 α \alpha α 是正则化因子(平衡干扰消除和噪声增强)。

(3) 最小均方误差(MMSE)预编码

优化目标:最小化 均方误差(MSE):
W = H H ( H H H + σ 2 I ) − 1 \mathbf{W} = \mathbf{H}^H (\mathbf{H} \mathbf{H}^H + \sigma^2 \mathbf{I})^{-1} W=HH(HHH+σ2I)1


  1. 总结
  • MU-MIMO 的核心 是 预编码 和 干扰管理。
  • ZF 预编码 完全消除干扰,但可能增强噪声。
  • MMSE/RZF 预编码 在干扰和噪声之间权衡。
  • SINR 和可达速率 是衡量 MU-MIMO 性能的关键指标。

该模型可用于 5G/6G 通信系统 的仿真和优化。
在这里插入图片描述
总结一下就是,h1、h2是两个用户的信道矩阵,w1和w2是发送端需要做的beamforming,如果能够满足w1和h2完全正交,此时用户一接收到的信号可以完全消除用户二的干扰。但是,如果h1和h2之间本身的正交性不好,这种寻找完全正交的w的方式会使得原本发送给用户1的信号投影到w1的分量很小!!

MIMO

SVD预编码

在这里插入图片描述

MIMO信号检测

在这里插入图片描述
在这里插入图片描述

Alamouti空时分组编码

在这里插入图片描述


在这里插入图片描述


在这里插入图片描述
空时编码(Space-Time Coding, STC)和MIMO(多输入多输出,Multiple-Input Multiple-Output)是无线通信中密切相关的两种技术,它们共同利用多天线系统提升通信性能。以下是它们的联系和区别:

1. MIMO技术

  • 核心思想:通过多根发射天线和接收天线,利用空间维度提升系统性能。
  • 主要优势
    • 空间复用:同时传输多个数据流,提高频谱效率。
    • 分集增益:通过多路径传输,增强信号可靠性。
    • 波束赋形:集中信号能量,提升覆盖范围和信号质量。

2. 空时编码(STC)

  • 核心思想:在时间和空间维度上编码信号,利用多根天线传输冗余信息,提升分集增益和可靠性。
  • 主要优势
    • 分集增益:通过多天线传输相同信号的不同版本,抵抗信道衰落。
    • 编码增益:通过编码设计,提升信号在接收端的分离和检测性能。

3. 空时编码与MIMO的联系

  • 空时编码是MIMO的一种实现方式:空时编码利用MIMO的多天线特性,在时间和空间维度上编码信号,实现分集和复用。
  • 共同目标:提升系统性能,包括可靠性(分集)和频谱效率(复用)。
  • 应用场景:空时编码常用于需要高可靠性的场景(如低速移动或高干扰环境),而MIMO的空间复用则用于高数据速率传输。

4. 空时编码在MIMO中的作用

  • 分集增益:通过多天线传输冗余信息,抵抗信道衰落。
  • 编码设计:如Alamouti编码,通过正交设计简化接收端信号分离。
  • 性能提升:在低信噪比或高干扰环境下,空时编码显著提升系统可靠性。

总结
空时编码是MIMO技术的重要组成部分,利用多天线系统在时间和空间维度上编码信号,提升系统性能。两者共同推动无线通信技术的发展。
在这里插入图片描述
在这里插入图片描述

多用户MIMO

在这里插入图片描述

大规模MIMO

在这里插入图片描述
在这里插入图片描述

上面的h是指小尺度衰落矩阵。i≠j时写错了应该等于0,。信道硬化是好处!!!!!!还有,这个h是需要在很多多径情况下符合复高斯分布的条件,这个在sub-6G频段上很容易满足,但在毫米波波长很多,多径数很少,因此不满足复高斯分布,所以信道硬化开始消失。
在这里插入图片描述

在这里插入图片描述

信号处理流程

在这里插入图片描述

大规模MIMO信号检测

在这里插入图片描述

最大似然检测

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

迫零检测

在这里插入图片描述


在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

下行信道估计

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
因为每根发射天线都有信号发送,因此并不稀疏。
但是空域可以经过DFT变换到角度域!通过对空域信道向DFT矩阵投影,即可变换为角度域信道
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

上行信道反馈(基站获取下行信道估计)

在这里插入图片描述

  • 假设信道矩阵为 h ∈ C M × 1 \mathbf{h} \in \mathbb{C}^{M \times 1} hCM×1(表示 M M M 根天线的信道系数),其维度随 M M M 增大而增加。若每个天线的信道系数需要 b b b 比特量化,则总比特数为 B = M × b B = M \times b B=M×b。 因此,量化比特数 B B B 需要与天线数 M M M 成正比
  • 若所有天线共用固定大小的码本(如8个),则每个天线的信道状态仅能用 log ⁡ 2 8 = 3 \log_2 8 = 3 log28=3 比特描述,但实际需要的比特数 b b b 需满足:
    B 总 = M × b ⇒ b = B 总 M B_{\text{总}} = M \times b \quad \Rightarrow \quad b = \frac{B_{\text{总}}}{M} B=M×bb=MB
    M = 128 M=128 M=128 时, b ≈ 0.06 b \approx 0.06 b0.06 比特/天线,完全无法描述信道状态。
  • 合理的 码本大小公式
    码本大小 = 2 B \text{码本大小} = 2^B 码本大小=2B
    • B B B M M M 成正比时(如 B = 2 M B=2M B=2M): 码本大小为 2 2 M 2^{2M} 22M,虽然随 M M M 增长,但增长速度是指数级的。

解决方案:如何平衡精度与开销?
虽然 B ∝ M B \propto M BM 是理论上的必要条件,但直接采用会导致码本爆炸。因此,实际系统中需采用以下优化方法:

1. 稀疏码本(Sparse Codebook)
  • 原理:利用信道的稀疏性(如大规模MIMO中信道的稀疏性或结构化特性),用少量比特描述主要信道特征。
  • 示例:仅反馈信道的主要路径(如强反射路径)而非全部天线信息。
2. 压缩感知(Compressed Sensing)
  • 原理:通过随机投影将高维信道向量压缩为低维信号,再通过稀疏表示重建信道。
  • 优势:反馈比特数 B ∝ K log ⁡ ( M ) B \propto K \log(M) BKlog(M),而非 M M M,其中 K K K 是信道的稀疏度。
3. 量化与反馈联合优化
  • 动态比特分配:根据信道重要性分配比特(如重要路径用更多比特)。
  • 反馈压缩算法:结合AI模型(如神经网络)预测信道变化,减少反馈频率。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

毫米波大规模MIMO

在这里插入图片描述
注意,这里的K表示单天线的用户数量,如果是多天线的情况,直接再乘以天线数就可以了。
在这里插入图片描述

超大规模MIMO

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
大规模MIMO在低频段通过增加多流数据的传输,实现空分复用,从而提升频谱效率;而在高频段的作用是形成高增益的载波数,克服传输距离短的问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值