搜索与图论:染色法判定二分图

搜索与图论:染色法判定二分图

染色法判定二分图

给定一个 n 个点 m 条边的无向图,图中可能存在重边和自环。

请你判断这个图是否是二分图。

输入格式
第一行包含两个整数 n 和 m。

接下来 m 行,每行包含两个整数 u 和 v,表示点 u 和点 v 之间存在一条边。

输出格式
如果给定图是二分图,则输出 Yes,否则输出 No。

数据范围
1 ≤ n,m ≤ 105

输入样例:

4 4
1 3
1 4
2 3
2 4

输出样例:

Yes

在这里插入图片描述
二分图中不含奇数环(奇数环:由奇数条边形成的一个环)
含奇数环的不是二分图

染色法

  • 将所有点分成两个集合,使得所有边只出现在集合之间,就是二分图
  • 二分图:一定不含有奇数环,可能包含长度为偶数的环, 不一定是连通图

dfs版本

  • 代码思路:
    • 染色可以使用1和2区分不同颜色,用0表示未染色
    • 遍历所有点,每次将未染色的点进行dfs, 默认染成1或者2
    • 由于某个点染色成功不代表整个图就是二分图,因此只有某个点染色失败才能立刻break/return
      • 染色失败相当于存在相邻的2个点染了相同的颜色
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 100010, M = 200010;
int n, m;
int h[N]; // 头节点 
int e[M]; // 节点  
int ne[M]; // 下一个节点 
int id;
int color[N];
void add(int a, int b)
{
	e[id] = b, ne[id] = h[a], h[a] = id ++ ;	
}
bool dfs(int u, int c)
{
	color[u] = c;
	for (int i = h[u]; i != -1; i = ne[i]) {
		int j = e[i];
		if (!color[j]) {
			if (!dfs(j, 3 - c)) return false;
		}
		else if (color[j] == c) return false;
	}
	return true;
}
int main()
{
	cin >> n >> m;
	memset(h, -1, sizeof h);
	while (m -- ) {
		int a, b;
		cin >> a >> b;
		add(a, b), add(b, a); // 邻接表存储 
	}
	bool flag = true;
	for (int i = 1; i <= n; i ++ ) 
		if (!color[i]) {
			if (!dfs(i, 1)) {
				flag = false;
				break;
			}
		}
	if (flag) puts("Yes");
	else puts("No");
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值