搜索与图论:染色法判定二分图
染色法判定二分图
给定一个 n 个点 m 条边的无向图,图中可能存在重边和自环。
请你判断这个图是否是二分图。
输入格式
第一行包含两个整数 n 和 m。
接下来 m 行,每行包含两个整数 u 和 v,表示点 u 和点 v 之间存在一条边。
输出格式
如果给定图是二分图,则输出 Yes,否则输出 No。
数据范围
1 ≤ n,m ≤ 105
输入样例:
4 4
1 3
1 4
2 3
2 4
输出样例:
Yes
二分图中不含奇数环(奇数环:由奇数条边形成的一个环)
含奇数环的不是二分图
染色法
- 将所有点分成两个集合,使得所有边只出现在集合之间,就是二分图
- 二分图:一定不含有奇数环,可能包含长度为偶数的环, 不一定是连通图
dfs版本
- 代码思路:
- 染色可以使用1和2区分不同颜色,用0表示未染色
- 遍历所有点,每次将未染色的点进行dfs, 默认染成1或者2
- 由于某个点染色成功不代表整个图就是二分图,因此只有某个点染色失败才能立刻break/return
- 染色失败相当于存在相邻的2个点染了相同的颜色
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 100010, M = 200010;
int n, m;
int h[N]; // 头节点
int e[M]; // 节点
int ne[M]; // 下一个节点
int id;
int color[N];
void add(int a, int b)
{
e[id] = b, ne[id] = h[a], h[a] = id ++ ;
}
bool dfs(int u, int c)
{
color[u] = c;
for (int i = h[u]; i != -1; i = ne[i]) {
int j = e[i];
if (!color[j]) {
if (!dfs(j, 3 - c)) return false;
}
else if (color[j] == c) return false;
}
return true;
}
int main()
{
cin >> n >> m;
memset(h, -1, sizeof h);
while (m -- ) {
int a, b;
cin >> a >> b;
add(a, b), add(b, a); // 邻接表存储
}
bool flag = true;
for (int i = 1; i <= n; i ++ )
if (!color[i]) {
if (!dfs(i, 1)) {
flag = false;
break;
}
}
if (flag) puts("Yes");
else puts("No");
return 0;
}