一、题目
给定一个非负整数数组 nums ,你最初位于数组的 第一个下标 。数组中的每个元素代表你在该位置可以跳跃的最大长度。
判断你是否能够到达最后一个下标。
实例:
输入:nums = [2,3,1,1,4]
输出:true
解释:可以先跳 1 步,从下标 0 到达下标 1, 然后再从下标 1 跳 3 步到达最后一个下标。
二、题解
1.代码
代码如下(示例):
class Solution {
public:
bool canJump(vector<int>& nums) {
int len=nums.size();
if(len==1)return true;
if(nums[0]==0)return false;
int maxnum=nums[0];//起点0,最远能够跳到的距离
for(int j=1;j<=maxnum;j++){
//将j作为新的起跳点,计算其最远跳跃位置,如果大于maxnum则更新maxnum
maxnum=max(nums[j]+j,maxnum);
//如果发现跳的过程中发现最远能够跳到的距离大于等于终点所在的位置,说明能够跳到终点,返回真
if(maxnum>=len-1)return true;
}
//能跳的点,跳完了,没有达到终点,返回false
return false;
}
};
2.思路
记最开始的点起跳的最远位置是maxnum,从该点到maxnum全部都可以达到。将这些可到达的点作为新的起跳点,计算其最远能够跳到的位置,如果大于此时的最远位置maxnum,则更新maxnum。如果所有在跳的过程中发现最远能够跳到的距离大于等于终点所在的位置,说明能够跳到终点,返回真。如果把能跳的点都跳了,最远能够跳到的距离还是没有超过终点所在的位置,说明终点不可达。
总结
不是动态规划但是标签是动态规划,浪费我好些时间,继续加油!