问题描述
100 可以表示为带分数的形式:100 = 3 + 69258 / 714。
还可以表示为:100 = 82 + 3546 / 197。
注意特征:带分数中,数字1~9分别出现且只出现一次(不包含0)。
类似这样的带分数,100 有 11 种表示法。
输入格式
从标准输入读入一个正整数N (N<1000*1000)
输出格式
程序输出该数字用数码1~9不重复不遗漏地组成带分数表示的全部种数。
注意:不要求输出每个表示,只统计有多少表示法!
样例输入1
100
样例输出1
11
样例输入2
105
样例输出2
6
解题思路
先用全排列算法寻找出所有的可能,再排列完成后,进行插木棍(两根)。第一根前面的数要注意数不可以大于输入的数,第二根前面的数可以用((number - a)*list[8]) % 10计算出来,在通过循环(改进:因为第二个一定大于第三个,所以可以从中间往后开始找)找到第二根的插入位置,最后也可以得到第三个数,最后在进行判断是否符合条件即可
代码
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
int number, n = 0;
int list[9] = { 1, 2, 3, 4, 5, 6, 7, 8, 9 };
int test;
void swap(int *a, int *b){
int temp = *a;
*a = *b;
*b = temp;
}//交换函数
int getNum(int s, int an){
int i, num = 0;
for (i = s; i <= an; i++){
num = list[i] + num * 10;
}
return num;
}//获得a,b,c的数
void perm(int k, int m, int x){
int i, j, a, b, c;
if (k > m){//排列完成,判断是否符合条件
for (i = 0; i < x; i++){
a = getNum(0, i);//获得数目a
test = ((number - a)*list[8]) % 10;//计算b的最后一个数
for (j = i + (8 - i) / 2; j < 8; j++){//从中间开始寻找test(优化)
if (list[j] == test){
b = getNum(i + 1, j);
c = getNum(j + 1, 8);
if (b % c == 0 && a + b / c == number){
n++;
}//判定
break;
}
}
}
}
else{
for (i = k; i <= m; i++){
swap(&list[k], &list[i]);
perm(k + 1, m, x);//递归全排列
swap(&list[k], &list[i]);//返回处理
}
}//全排列算法
}
int main(){
clock_t s1, s2;
int temp, x;//中间变量,记录number的位数
while (scanf("%d", &number) != EOF && number != 0){
x = 0;
temp = number;
s1 = clock();
n = 0;
while (temp != 0){
x++;
temp /= 10;
}//算位数
perm(0, 8, x);//全排列算法+间隔插针解题
printf("total:%d\n", n);
s2 = clock();
printf("%f ms\n", (double)(s2 - s1));
}
}