运行最大公约数的常用算法,并进行程序的调式与测试,要求程序设计风格良好,并添加异常处理模块(如输入非法等)。
算法构造
1.辗转相除法(又名欧几里德法)
①、大数放a中、小数放b中;
②、求a/b的余数;
③、若temp=0则b为最大公约数;
④、如果temp!=0则把b的值给a、temp的值给a;
⑤、返回第二步。
2.穷举法从两个数中较小数开始由大到小列举,直到找到公约数立即中断列举,得到的公约数便是最大公约数 。
3.更相减损法
①任意给定两个正整数;判断它们是否都是偶数。若是,则用2约简;若不是则执行第二步。
②以较大的数减较小的数,接着把所得的差与较小的数比较,并以大数减小数。继续这个操作,直到所得的减数和差相等为止。
则①中约掉的若干个2与②中等数的乘积就是所求的最大公约数。
其中所说的“等数”,就是最大公约数。求“等数”的办法是“更相减损”法。所以更相减损法也叫等值算法。
4.Stein算法对两个正整数 x>y :
①均为偶数 gcd( x,y ) =2gcd( x/2,y/2 );
②均为奇数 gcd( x,y ) = gcd( (x+y)/2,(x-y)/2 );
③x奇y偶 gcd( x,y ) = gcd( x,y/2 );
④x偶y奇 gcd( x,y ) = gcd( x/2,y ) 或 gcd( x,y )=gcd( y,x/2 );
算法实现
1.辗转相除法
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <math.h>
int divisor (int a,int b)
{
int temp;
if(a<b)
{ temp=a;a=b;b=temp;}
while(b!=0)
{
temp=a%b;
a=b;
b=temp;
}
return (a);
}
int multiple (int a,int b)
{
int divisor (int a,int b);
int temp;
temp=divisor(a,b);
return (a*b/temp);
}
//辗转相除法
int gcd (int a,int b)
{ if(a%b==0)
return b;
else
return gcd(b,a%b);
}
//穷举法
int divisorr (int a,int b)
{
int temp;
temp=(a>b)?b:a;
while(temp>0)
{
if (a%temp==0&&b%temp==0)
break;
temp--;
}
return (temp);
}
//更相减损法
int gcdd(int m,int n)
{
int i=0,temp,x;
while(m%2==0 && n%2==0)
{
m/=2;
n/=2;
i+=1;
}
if(m<n)
{
temp=m;
m=n;
n=temp;
}
while(x)
{
x=m-n;
m=(n>x)?n:x;
n=(n<x)?n:x;
if(n==(m-n))
break;
}
if(i==0)
return n;
else
return (int )pow(2,i)*n;
}
//Stein算法
int Stein( unsigned int x, unsigned int y )
{
int factor = 0;
int temp;
if ( x < y )
{
temp = x;
x = y;
y = temp;
}
if ( 0 == y )
{
return 0;
}
while ( x != y )
{
if ( x & 0x1 )
{
if ( y & 0x1 )
{
y = ( x - y ) >> 1;
x -= y;
}
else
{
y >>= 1;
}
}
else
{
if ( y & 0x1 )
{
x >>= 1;
if ( x < y )
{
temp = x;
x = y;
y = temp;
}
}
else
{
x >>= 1;
y >>= 1;
++factor;
}
}
}
return ( x << factor );
}
void main()
{
int t1,t2,i,p,q,choose=1;
int a[1000],b[1000];
clock_t start, finish;
double totaltime;
printf("数据个数:");
scanf("%d",&q);
srand((unsigned)time(NULL));
for(i=0;i<=q;i++)
{
a[i]=rand()%250;
b[i]=rand()%250;
}
printf("1.辗转相除法嵌套\n");
printf("2.辗转相除法递归\n");
printf("3.穷举法\n");
printf("4.更相减损法\n");
printf("5.Stein算法\n");
while(choose)
{
printf("运用的算法:");
scanf("%d",&p);
switch(p)
{
case 1:
start = clock();
for(i=0;i<=q;i++)
{
t1=divisor(a[i],b[i]);
t2=multiple(a[i],b[i]);
printf("随机产生的两个数为:%d %d\n",a[i],b[i]);
printf("最大公约数是 %d\n",t1);
printf("最小公倍数是%d\n", t2);
}
finish = clock();
totaltime = (double)(finish - start) / CLOCKS_PER_SEC;
printf( "辗转相除法嵌套需要时间为%f seconds\n", totaltime );break;
case 2:
start = clock();
for(i=0;i<=q;i++)
{
t1=gcd(a[i],b[i]);
printf("最大公约数是 %d\n",t1);
printf("最小公倍数是 %d\n",a[i]*b[i]/t1);
}
finish = clock();
totaltime = (double)(finish - start) / CLOCKS_PER_SEC;
printf( "辗转相除法递归需要时间为%f seconds\n", totaltime );break;
case 3:
start = clock();
for(i=0;i<=q;i++)
{
t1=divisorr(a[i],b[i]);
printf("最大公约数是 %d\n",t1);
}
finish = clock();
totaltime = (double)(finish - start) / CLOCKS_PER_SEC;
printf( "穷举法需要时间为%f seconds\n", totaltime );break;
case 4:
start = clock();
for(i=0;i<=q;i++)
{
t1=gcdd(a[i],b[i]);
printf("最大公约数是 %d\n",t1);
}
finish = clock();
totaltime = (double)(finish - start) / CLOCKS_PER_SEC;
printf( "更相减损法需要时间为%f seconds\n", totaltime );break;
case 5:
start = clock();
for(i=0;i<=q;i++)
{
t1=Stein(a[i],b[i]);
printf("最大公约数是 %d\n",t1);
}
finish = clock();
totaltime = (double)(finish - start) / CLOCKS_PER_SEC;
printf( "Stein算法需要时间为%f seconds\n", totaltime );break;
}
printf("\n继续查找选1,退出选0:");
scanf("%d",&choose);
if(choose==0)
break;
}
}
运行结果