738单调递增的数字

题解

如果不符合题目要求的条件,即前一个数大于后一个数,那么如果前一个数字不变,后一个数字如果减小,那么肯定还是小于前一个数,如果后一个数字增大,那么会超过原来的数字,不符合条件。因此,只能前一个数字减1。
如果从前往后遍历,前一个数大于后一个数,前一个数字减1,但是可能又会小于“它”的前一个数字。因此从后往前遍历,可以重复利用上次比较得出的结果。

class Solution {
    public int monotoneIncreasingDigits(int n) {
        String a=String.valueOf(n);
        char[] b=a.toCharArray();
        int start=b.length;
        for(int i=b.length-2;i>=0;i--){
            if(b[i]>b[i+1]){
                b[i]-=1;
                start=i+1;
            }
        }
        for(int i=start;i<=b.length-1;i++){
            b[i]='9';
        }
        return Integer.parseInt(String.valueOf(b));
    }
}
最长单调递增子序列问题的动态规划算法实现: 1. 定义状态:dp[i]表示以第i个元素为结尾的最长单调递增子序列的长度。 2. 初始化:dp[i]初始值为1,因为任意一个元素本身就是一个长度为1的单调递增子序列。 3. 状态转移方程:对于每个元素i,枚举其之前的元素j(j<i),如果nums[j] < nums[i],则dp[i] = max(dp[i], dp[j]+1)。 4. 最终结果:遍历dp数组,找到最大值。 代码实现: ``` def longestIncreasingSubsequence(nums): n = len(nums) dp = [1] * n for i in range(1, n): for j in range(i): if nums[j] < nums[i]: dp[i] = max(dp[i], dp[j]+1) return max(dp) ``` 数字三角形问题的动态规划算法实现: 1. 定义状态:dp[i][j]表示从顶部走到(i,j)位置的最小路径和。 2. 初始化:dp[0][0] = triangle[0][0],其他dp[i][j]的初始值为正无穷。 3. 状态转移方程:对于每个位置(i,j),有两个状态可以转移过来,即(i-1,j)和(i-1,j-1),因此dp[i][j] = min(dp[i-1][j], dp[i-1][j-1]) + triangle[i][j]。 4. 最终结果:遍历dp数组的最后一行,找到最小值。 代码实现: ``` def minimumTotal(triangle): n = len(triangle) dp = [[float('inf')] * n for _ in range(n)] dp[0][0] = triangle[0][0] for i in range(1, n): for j in range(i+1): dp[i][j] = min(dp[i-1][j], dp[i-1][j-1]) + triangle[i][j] return min(dp[-1]) ``` 效率分析: 最长单调递增子序列问题的时间复杂度为O(n^2),空间复杂度为O(n)。 数字三角形问题的时间复杂度为O(n^2),空间复杂度为O(n^2)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值