46. 全排列

46. 全排列

LeetCode刷题打卡第029天 (第1篇) 20210807

题目链接

在这里插入图片描述

代码1

1. 运用回溯法模板的代码

void backtracking(参数) {
    if (终止条件) {
        存放结果;
        return;
    }

    for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
        处理节点;
        backtracking(路径,选择列表); // 递归
        回溯,撤销处理结果
    }
}

2. 具体代码

class Solution {
public:
    vector<vector<int>> permute(vector<int>& nums) {
       vector<vector<int> > ans;   //返回的答案值
       vector<bool> used(nums.size(),false);
       vector<int > path;   //记录路径
       backtracking(nums,ans,used,path);  
       return ans; 
    }
    void backtracking(vector<int> &nums,vector<vector<int> >&ans,vector<bool> &used,vector<int> path){
        if(path.size()==nums.size()){
            ans.push_back(path);
            return;
        }
        for(int i=0;i<nums.size();i++){
            if(used[i])//说明已经进入过path中 
                continue;
            else{
                used[i]=true;
                path.push_back(nums[i]);
                backtracking(nums,ans,used,path);
                used[i]=false;
                path.pop_back();
            }
        }
    }
};

代码2

class Solution {
public:
    vector<vector<int>> permute(vector<int>& nums) {
       vector<vector<int> > ans;
       backtrack(nums,0,ans);  //传递参数,代表第0层
       return ans; 
    }
    void backtrack(vector<int> &nums,int depth,vector<vector<int> >&ans){
        if(depth==nums.size()) {   //根据回溯的知识,可以得当触底时进行返回
            ans.push_back(nums);
            return;
        }
        for(int i=depth;i<nums.size();i++){
            swap(nums[i],nums[depth]);
            backtrack(nums,depth+1,ans);
            swap(nums[i],nums[depth]);
        }
    
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值