图论学习-负环


acwing提高课正好看到负环,干脆写篇博客记录一下。

一、负环

定义:环中所有边权值和为负数的环,称为负环
负环可以有两种求法:bellman_ford和spfa
spfa是对bellman_ford的优化,一般是用spfa求负环
时间复杂度最好O(m),最坏O(km)

给出判负环的两种方法:
(1) 统计每个点入队次数,如果某个点入队n次,说明存在n条边的路径,那么必然有n+1个点,则存在负环
(2) 只要某个点最短路所含的边数大于等于n,说明至少n+1个点,则存在负环

注意: 负环不一定从起点走到,它可能在图中任意一个位置,一种解决办法是把所有点入队。
把所有点入队是显然的,相当于建立一个虚拟源点,直接在新图上找负环。

注:spfa 求负环时是可以忽略dist的初始值的

例题:P2850
spfa求负环模板题

#include<bits/stdc++.h>
using namespace std;
const int N = 1510,M = 5510;
int h[N], e[M], w[M], ne[M], idx;
int dist[N],cnt[N];
int q[N];
bool st[N];
int t,n,m,k;
void init()
{
    memset(h, -1, sizeof h);
    idx = 0;
    memset(cnt,0,sizeof cnt);
    // memset(dist,0,sizeof dist);
    memset(st, 0, sizeof st);
}
void add(int a,int b,int c)
{
    e[idx] = b,w[idx] = c,ne[idx] = h[a],h[a] = idx++;
}
bool spfa()
{
	//这里使用的是数组模拟循环队列
	//数组模拟队列一般会比STL快一些,有时候大概快一倍左右
    int hh = 0,tt = 0;
    for(int i = 1;i<=n;i++)
    {
        q[tt++] = i;
        st[i] = true;
    }
    while(hh!=tt)
    {
        int t = q[hh++];
        if(hh==N) hh = 0;
        st[t] = false;
        for(int i = h[t];~i;i = ne[i])
        {
            int j = e[i];
            if(dist[j]>dist[t]+w[i])
            {
                dist[j] = dist[t]+w[i];
                cnt[j] = cnt[t]+1;
                if(cnt[j]>=n) return true;
                if(!st[j])
                {
                    st[j] = true;
                    q[tt++] = j;
                    if(tt==N) tt = 0;
                }
            }
        }
    }
    return false;
}
int main()
{
    cin>>t;
    while(t--)
    {
        int a,b,c;
        init();
        cin>>n>>m>>k;
        for(int i = 0;i<m;i++)
        {
            cin>>a>>b>>c;
            add(a,b,c);
            add(b,a,c);
        }
        for(int i = 0;i<k;i++)
        {
            cin>>a>>b>>c;
            add(a,b,-c);
        }
        if(spfa())
        {
            cout<<"YES\n";
        }
        else
        {
            cout<<"NO\n";
        }
    }
    return 0;
}

二、习题

图论也喜欢和其他知识点联系起来,给出一个练习题:
在这里插入图片描述
在这里插入图片描述
这是图论与01分数规划结合的好题,顺便给出01分数规划常规的思考流程:
凡是遇到
∑ f i g i \sum\frac{f_i}{g_i} gifi的式子,一般考虑二分,然后转换式子,把式子与其他定理建立联系,比如上题:
另外注意一点:对于点和边都有权值的图,可以把点权放到边权上统一考虑,简化问题。

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;

const int N = 2e3+10,M = 1e4+10;
int h[N],e[M],ne[M],idx;
int wf[N],wt[M];
int n,m;
double dist[N];
int q[N],cnt[N];
bool st[N];
void add(int a, int b, int c)  // 添加一条边a->b,边权为c
{
    e[idx] = b, wt[idx] = c, ne[idx] = h[a], h[a] = idx ++ ;
}

bool check(double mid)
{
    memset(dist,0,sizeof dist);
    memset(st,0,sizeof st);
    memset(cnt,0,sizeof cnt);
    //循环队列
    int hh = 0,tt = 0;
    for(int i = 1;i<=n;i++)
    {
        st[i] = true;
        q[tt++] = i;
    }
    while(hh!=tt)//循环队列要写成hh!=tt
    {
        int t = q[hh++];
        if(hh==N) hh = 0;
        st[t] = false;
        for (int i = h[t]; ~i; i = ne[i])
        {
            int j = e[i];
            if (dist[j] < dist[t] + wf[t] - mid * wt[i])
            {
                dist[j] = dist[t] + wf[t] - mid * wt[i];
                cnt[j] = cnt[t] + 1;
                if (cnt[j] >= n) return true;
                if (!st[j])
                {
                    q[tt ++ ] = j;
                    if (tt == N) tt = 0;
                    st[j] = true;
                }
            }
        }
    }
    return false;
}
int main()
{
    memset(h, -1, sizeof h);
    cin>>n>>m;
    for(int i = 1;i<=n;i++)
        cin>>wf[i];
    for(int i = 1;i<=m;i++)
    {
        int a,b,c;
        cin>>a>>b>>c;
        add(a,b,c);
    }
    double l = 0,r = 100000;
    //一般来说保留两位小数即大于1e-4就行,精度一般高两位
    while(r-l>1e-4)
    {
        double mid = (l+r)/2;
        if(check(mid)) l = mid;
        else r = mid;
    }
    printf("%.2lf",r);
    return 0;
}
  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值