【VQ-VAE论文精读+代码实战】Neural Discrete Representation Learning

本文介绍了VQ-VAE,一种将矢量量化思想引入变分自编码器的模型,用于学习离散潜在表征。VQ-VAE解决了VAE的后验坍塌问题,适用于图像、语音等模态的高质量生成。通过对比现有方法,VQ-VAE在离散表示学习中表现出优势,并在实验中展示了其在生成任务上的优秀性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0、前言

论文地址:基于神经网络的,离散的表征学习
代码地址:https://colab.research.google.com/github/zalandoresearch/pytorch-vq-vae/blob/master/vq-vae.ipynb

本篇博客主要介绍VQVAE,将VQ的思想引入VAE中,在隐空间进行生成,代表工作如Stable Diffusion,DALLE和VQGAN。现在很多预训练的大模型都用到VQVAE。
Vector Quantised Variational AutoEncoder (VQ-VAE)矢量量化变分自编码器。
本篇博客首先梳理论文的关键点,分析VQVAE的代码在这:【VQ-VAE代码实战】Neural Discrete Representation Learning

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

旋转的油纸伞

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值