【阿里】质数【欧拉筛法,埃氏筛法和开根】

题目描述:

输入 n n n 个不大于 1 0 5 10^5 105 的正整数。要求全部储存在数组中,去除掉不是质数的数字,依次输出剩余的质数。

输入格式

第一行输入一个正整数 n n n,表示整数个数。

第二行输入 n n n 个正整数 a i a_i ai,以空格隔开。

输出格式

输出一行,依次输出 a i a_i ai 中剩余的质数,以空格隔开。

样例 #1

样例输入 #1

5
3 4 5 6 7

样例输出 #1

3 5 7

提示

数据保证, 1 ≤ n ≤ 100 1\le n\le100 1n100 1 ≤ a i ≤ 1 0 5 1 \leq a_i \leq 10^5 1ai105

OJ链接:
https://www.luogu.com.cn/problem/P5736

解题思路一:开根:最简单的。注意 for i in range(2, math.isqrt(num) + 1):,range里面只能用整数平方根isqrt()

#include <bits/stdc++.h> 
using namespace std;
long long shai(long long a)
{
	if(a<2)
	{
		return 0;//小于201绝对不是,我被坑了2次。
	}
	for(int i=2;i<=sqrt(a);i++)
	{
		if(a%i==0)
		{
			return 0;//传进来的数已经有了除1和本身之外的数了,就绝对不是素数。
		}
	}
	return 1;//跑遍了循环没找到除1和本身之外的数,那就是素数,返回1}
int main()
{
    long long n;
    cin>>n;
    long long qwq[100001];
    for(int i=1;i<=n;i++)
    {
    	cin>>qwq[i];//输入数。
	}
	for(int i=1;i<=n;i++)
    {
    	if(shai(qwq[i])==1) cout<<qwq[i]<<" ";//如果函数结果为1就输出这个数。
	}
	return 0;
}

# python
import math
n = int(input())
nums = list(map(int, input().split()))
def shai(num):
    if num < 2:
        return 0
    for i in range(2, math.isqrt(num) + 1):
        if num % i == 0:
            return 0
    return 1
for num in nums:
    if shai(num):
        print(num, end = " ")

时间复杂度:O(nsqrt(n))
空间复杂度:O(1)

解题思路二:欧拉筛法(最优解)

#include <bits/stdc++.h>
using namespace std;
long long n,m;
bool vis[10000001]={1,1};//01均既不是素数,也不是和数,所以先标记为不是
int Prime[10000001],k;
void prime(long long n)
{
    for(int i=2;i<=n;i++)//最小的素数是2
    {
        if(!vis[i])
        {
            Prime[++k]=i;//如果是素数就标记一下
         }
        for(int j=1;j<=k;j++)//j小于当前所有的素数的个数
        {
            if(Prime[j]*i>n)
            {
                break;
            }
            vis[Prime[j]*i]=true;//用素数依次×i,结果标记为合数
            if(i%Prime[j]==0)
            {
                break;
            }
        }
    }//欧拉筛法,就是拿当前的数×之前的筛出来的素数,这个数即为合数
}
int main()
{
    cin>>n;
    prime(100001);//105次方范围内筛素数
    for(int i=1;i<=n;i++)
    {
        int t;
        cin>>t;
        if(!vis[t])//上面标记过了,这时输入后直接判断就行了
        {
            cout<<t<<" ";
        }
    }
    return 0;
}

# python
N = 10 ** 7 + 2
vis = [0] * N # 标记是质数或是合数
vis[0] = vis[1] = 1 # 0, 1既不是素数,也不是和数,所以先标记为不是
Prime = [0] * N # 仅仅标记当前遇到的素数
k = 1
n = int(input())
nums = list(map(int, input().split()))

def prime(x): #欧拉筛法,就是拿当前的数×之前的筛出来的素数,这个数即为合数
    for i in range(2, n+1): # 最小的素数是2
        if not vis[i]:
            global k
            Prime[k] = i # 如果是素数就标记一下
            k += 1
        for j in range(1, k+1): #j小于当前所有的素数的个数
            if Prime[j] * i > x:
                break
            vis[Prime[j]*i] = 1 #用素数依次×i,结果标记为合数
            if i % Prime[j]==0:
                break
prime(100001)  # 数据范围
for num in nums:
    if not vis[num]:
        print(num, end = " ")

时间复杂度:O(n)
空间复杂度:O(n)

解题思路三:【埃氏筛法】原理就是开一个数据范围的数组,首先将所有数标记为非质数。然后依次遍历for(int i=2;i<=qwq;i++),内层循环将for j in range(i + i, num + 1, i):【i+i, i+i+i,i+i+i+i, …】标记为质数。最终可以得到这个范围内的所有质数与合数。

埃氏筛法(比欧拉筛法更容易理解)埃氏筛法用的较少,但是它的思路可以用于其他一些题目,思路比较重要。

#include <bits/stdc++.h>
using namespace std;
bool vis[100002]={1,1};//0,1标为不是
int n;
void Era(int qwq)
{
    for(int i=2;i<=qwq;i++)
    {
        if(vis[i])
        {
            continue;
        }//是合数就不执行
        for(int j=i*2;j<=qwq;j+=i)//从i×2开始筛,因为进过判断后i为素数
        {
            vis[j]=true;//j=i的倍数,每次加i,即为i的倍数每次加1,p数组的第j个元素标为合数
        }
    }
}
int main()
{
    cin>>n;
    int tmp;
    Era(100001);
    for(int i=1;i<=n;i++)
    {
        scanf("%d",&tmp);
        if(!vis[tmp])//已经记下了,判断一下即可
        {
            cout<<tmp<<" ";
        }//真就不是,假就是
    }
    // 打印vis数组内容
    // for(int i = 0; i <= 100; i++) {
    //     cout << "vis[" << i << "] = " << vis[i] << endl;
    // }
    return 0;
}

# python
n = int(input())
nums = list(map(int, input().split()))
vis = [0] * 100002
vis[0], vis[1] = 1, 1 # 0,1标为不是质数
def Era(num):
    for i in range(2, num + 1):
        if vis[i]:
            continue
        for j in range(i + i, num + 1, i):
            vis[j] = 1
Era(100001)
for num in nums:
    if not vis[num]:
        print(num, end = " ")

时间复杂度:O(n)
空间复杂度:O(n)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

旋转的油纸伞

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值