波动方程数值解是波动方程正演、逆时偏移和全波形反演的核心技术之一。本文采用二阶有限差分对波动方程进行了离散,进而实现了对波动方程的数值求解,模拟出其在介质中的传播过程。
1、二维声波波动方程离散
利用泰勒公式进行展开得到:
两式相减得:
则有:
近似得二阶差分算子:
利用二阶中心差分算子对二阶导数进行离散:
将上式代入声波方程得到二阶中心差分格式:
其中:
收敛满足:
其空间和时间差分格式示意图如下图所示:
2、均匀介质二维声波方程求解
初始参数:
# 区域大小
Nx = 301
Nz = 301
# 时间采样数
Nt = 1000
# 速度模型
v = np.ones((Nx+1,Nz+1)) * 3000
u = np.zeros((Nt+1,Nx+1,Nz+1))
h = 5
# 子波主频
fm = 25
# 空间衰减因子
alpha = 0.5
# 时间步
dt = 1 / Nt
# 空间间隔
dx = h
dy = h
# 迭代公式中的r
A = v **2 * dt ** 2 / h ** 2
C = v * dt / h
收敛条件判断:
r = np.max(v)*dt/h
assert r < 0.707,f'r should < 0.707, but is {r}'
雷克子波及二维空间衰减函数:
t = np.arange(0, Nt+1)
t0 = 0 # 延迟时间,相当于在t=t0时激发 ,震幅在t0时最大,相位也在此
s_t = (1 - 2 * (np.pi * fm * dt * (t - t0)) ** 2) * np.exp( - (np.pi * fm * dt * (t - t0)) ** 2)
x = np.arange(0,Nx+1)
z = np.arange(0,Nz+1)
x,z = np.meshgrid(x,z)
h_x_z = np.zeros((Nx+1,Nz+1)) #np.exp(-0.25 * ((x - Nx//2)**2 + (z - Nz//2)**2)) 二维空间衰减函数
h_x_z[Nx//2,Nz//2] = 1 # 在Nx//2,Nz//2处激发
h_x_z = np.exp(-alpha ** 2 * ((x - Nx//2)**2 + (z - Nz//2)**2)) # 二维空间衰减函数
x0 = Nx // 2
z0 = Nz // 2
u0 = lambda r, s: 0.25*np.exp(-((r-x0)**2+(s-z0)**2))
JJ = np.arange(1,Nz)
II = np.arange(1,Nx)
II,JJ = np.meshgrid(II,JJ)
吸收边界条件:
Clayton-Engquist 单成波吸收边界条件:最早是由 Clayton 等人发现并推广的, 其微分表达式为:
其中:n 为边界的外法线方向; s 边界的切线方向。
对上式进行离散得到上、下、左、右边界差分格式如下:
其中: N 、 M 为边界的网格数。
则有:
# 边界条件
ii = np.arange(Nx+1)
jj = np.arange(Nz+1)
# Clayton-Engquist-majda 二阶吸收边界条件
u[t+1, 0, jj] = (2 - 2 * C[ 0, jj] - C[ 0, jj] ** 2) * u[t, 0, jj] \
+ 2 * C[ 1, jj] * (1 + C[ 1, jj]) * u[t, 1, jj] \
- C[ 2, jj] ** 2 * u[t, 2, jj] \
+ (2 * C[ 0, jj] - 1) * u[t - 1, 0, jj] \
- 2 * C[ 1, jj] * u[t - 1, 1, jj]
# 下部
u[t+1, -1, jj] = (2 - 2 * C[ -1, jj] - C[ -1, jj] ** 2) * u[t, -1, jj] \
+ 2 * C[ -2, jj] * (1 + C[ -2, jj]) * u[t, -2, jj] \
- C[ -3, jj] ** 2 * u[t, -3, jj] \
+ (2 * C[ -1, jj] - 1) * u[t - 1, -1, jj] \
- 2 * C[ -2, jj] * u[t - 1, -2, jj]
# 左部
u[t+1, ii, 0] = (2 - 2 * C[ii, 0] - C[ii, 0] ** 2) * u[t, ii, 0] \
+ 2 * C[ii, 1] * (1 + C[ii, 1]) * u[t, ii, 1] \
- C[ii, 2] ** 2 * u[t, ii, 2] \
+ (2 * C[ii, 0] - 1) * u[t - 1, ii, 0] \
- 2 * C[ii, 1] * u[t - 1, ii, 1]
# 右部
u[t+1, ii, -1] = (2 - 2 * C[ii, -1] - C[ii, -1] ** 2) * u[t, ii, -1] \
+ 2 * C[ii, -2] * (1 + C[ii, -2]) * u[t, ii, -2] \
- C[ii, -3] ** 2 * u[t, ii, -3] \
+ (2 * C[ii, -1] - 1) * u[t - 1, ii, -1] \
- 2 * C[ii, -2] * u[t - 1, ii, -2]
Reynolds 边界条件:对于二维声波波动方程,应用二维声波方的微分算子可以 得到:
对上式进行离散可得上下左右边界计算公式:
则有:
#Reynolds 边界条件
u[t+1,ii, 0] = u[t,ii, 0] + u[t,ii, 1] - u[t-1,ii, 1] + C[ii, 1]*u[t,ii, 1] - C[ii, 0]*u[t,ii, 0] -C[ii, 2]*u[t-1,ii, 2] +C[ii, 1]*u[t-1,ii, 1]
u[t+1,ii,-1] = u[t,ii,-1] + u[t,ii,-2] - u[t-1,ii,-2] + C[ii,-2]*u[t,ii,-2] - C[ii,-1]*u[t,ii,-1] -C[ii,-3]*u[t-1,ii,-3] +C[ii,-2]*u[t-1,ii,-2]
u[t+1, 0,jj] = u[t, 0,jj] + u[t, 1,jj] - u[t-1, 1,jj] + C[ 1,jj]*u[t, 1,jj] - C[ 0,jj]*u[t, 0,jj] -C[ 2,jj]*u[t-1, 2,jj] +C[ 1,jj]*u[t-1, 1,jj]
u[t+1,-1,jj] = u[t,-1,jj] + u[t,-2,jj] - u[t-1,-2,jj] + C[-2,jj]*u[t,-2,jj] - C[-1,jj]*u[t,-1,jj] -C[-3,jj]*u[t-1,-3,jj] +C[-1,jj]*u[t-1,-2,jj]
迭代公式:
# 迭代公式
u[t+1,II,JJ] = s_t[t]*h_x_z[II,JJ]+A[II,JJ]*(u[t,II,JJ+1]+u[t,II,JJ-1]+u[t,II+1,JJ]+u[t,II-1,JJ])+(2-4*A[II,JJ])*u[t,II,JJ]-u[t-1,II,JJ]
所有代码如下:
import numpy as np
import imageio.v2 as imageio
import os
import pandas as pd
from matplotlib import pyplot as plt
# 解决中文问题
plt.rcParams['font.sans-serif'] = ['SimHei']
# 解决负号显示问题
plt.rcParams['axes.unicode_minus'] = False
Nx = 301
Nz = 301
Nt = 1000
v = np.ones((Nx+1,Nz+1)) * 3000
h = 5
fm = 25
alpha = 0.5
dt = 1 / Nt
dx = h
dy = h
A = v **2 * dt ** 2 / h ** 2
C = v * dt / h
r = np.max(v)*dt/h
assert r < 0.707,f'r should < 0.707, but is {r}'
u = np.zeros((Nt+1,Nx+1,Nz+1))
t = np.arange(0, Nt+1)
t0 = 0 # 延迟时间,相当于在t=t0时激发 ,震幅在t0时最大,相位也在此
s_t = (1 - 2 * (np.pi * fm * dt * (t - t0)) ** 2) * np.exp( - (np.pi * fm * dt * (t - t0)) ** 2)
plt.plot(s_t)
plt.show()
x = np.arange(0,Nx+1)
z = np.arange(0,Nz+1)
x,z = np.meshgrid(x,z)
# print(((z - Nz//2)**2).shape)
h_x_z = np.zeros((Nx+1,Nz+1)) #np.exp(-0.25 * ((x - Nx//2)**2 + (z - Nz//2)**2)) 二维空间衰减函数
h_x_z[Nx//2,Nz//2] = 1 # 在Nx//2,Nz//2处激发
h_x_z = np.exp(-alpha ** 2 * ((x - Nx//2)**2 + (z - Nz//2)**2)) # 二维空间衰减函数
JJ = np.arange(1,Nz)
II = np.arange(1,Nx)
II,JJ = np.meshgrid(II,JJ)
mode = 'c_e'
img_path = './2_order'
if not os.path.exists(img_path):
os.makedirs(img_path)
for t in range(2,Nt):
print('\rstep {} / {}'.format(t ,Nt), end="")
# 边界条件
ii = np.arange(Nx+1)
jj = np.arange(Nz+1)
if mode == 'c_e':
# Clayton-Engquist-majda 二阶吸收边界条件
u[t+1, 0, jj] = (2 - 2 * C[ 0, jj] - C[ 0, jj] ** 2) * u[t, 0, jj] \
+ 2 * C[ 1, jj] * (1 + C[ 1, jj]) * u[t, 1, jj] \
- C[ 2, jj] ** 2 * u[t, 2, jj] \
+ (2 * C[ 0, jj] - 1) * u[t - 1, 0, jj] \
- 2 * C[ 1, jj] * u[t - 1, 1, jj]
# 下部
u[t+1, -1, jj] = (2 - 2 * C[ -1, jj] - C[ -1, jj] ** 2) * u[t, -1, jj] \
+ 2 * C[ -2, jj] * (1 + C[ -2, jj]) * u[t, -2, jj] \
- C[ -3, jj] ** 2 * u[t, -3, jj] \
+ (2 * C[ -1, jj] - 1) * u[t - 1, -1, jj] \
- 2 * C[ -2, jj] * u[t - 1, -2, jj]
# 左部
u[t+1, ii, 0] = (2 - 2 * C[ii, 0] - C[ii, 0] ** 2) * u[t, ii, 0] \
+ 2 * C[ii, 1] * (1 + C[ii, 1]) * u[t, ii, 1] \
- C[ii, 2] ** 2 * u[t, ii, 2] \
+ (2 * C[ii, 0] - 1) * u[t - 1, ii, 0] \
- 2 * C[ii, 1] * u[t - 1, ii, 1]
# 右部
u[t+1, ii, -1] = (2 - 2 * C[ii, -1] - C[ii, -1] ** 2) * u[t, ii, -1] \
+ 2 * C[ii, -2] * (1 + C[ii, -2]) * u[t, ii, -2] \
- C[ii, -3] ** 2 * u[t, ii, -3] \
+ (2 * C[ii, -1] - 1) * u[t - 1, ii, -1] \
- 2 * C[ii, -2] * u[t - 1, ii, -2]
if mode == 're':
#Reynolds 边界条件
u[t+1,ii, 0] = u[t,ii, 0] + u[t,ii, 1] - u[t-1,ii, 1] + C[ii, 1]*u[t,ii, 1] - C[ii, 0]*u[t,ii, 0] -C[ii, 2]*u[t-1,ii, 2] +C[ii, 1]*u[t-1,ii, 1]
u[t+1,ii,-1] = u[t,ii,-1] + u[t,ii,-2] - u[t-1,ii,-2] + C[ii,-2]*u[t,ii,-2] - C[ii,-1]*u[t,ii,-1] -C[ii,-3]*u[t-1,ii,-3] +C[ii,-2]*u[t-1,ii,-2]
u[t+1, 0,jj] = u[t, 0,jj] + u[t, 1,jj] - u[t-1, 1,jj] + C[ 1,jj]*u[t, 1,jj] - C[ 0,jj]*u[t, 0,jj] -C[ 2,jj]*u[t-1, 2,jj] +C[ 1,jj]*u[t-1, 1,jj]
u[t+1,-1,jj] = u[t,-1,jj] + u[t,-2,jj] - u[t-1,-2,jj] + C[-2,jj]*u[t,-2,jj] - C[-1,jj]*u[t,-1,jj] -C[-3,jj]*u[t-1,-3,jj] +C[-1,jj]*u[t-1,-2,jj]
# 迭代公式
u[t+1,II,JJ] = s_t[t]*h_x_z[II,JJ]+A[II,JJ]*(u[t,II,JJ+1]+u[t,II,JJ-1]+u[t,II+1,JJ]+u[t,II-1,JJ])+(2-4*A[II,JJ])*u[t,II,JJ]-u[t-1,II,JJ]
plt.imshow(u[t], cmap='gray_r') # 'seismic' gray_r
# plt.axis('off') # 隐藏坐标轴
plt.colorbar()
if t % 10 == 0:
plt.savefig(os.path.join(img_path, str(t) + '.png'),
bbox_inches="tight", # 去除坐标轴占用空间
pad_inches=0.0) # 去除所有白边
plt.pause(0.05)
plt.cla()
plt.clf() # 清除所有轴,但是窗口打开,这样它可以被重复使用
plt.close()
# 保存gif
filenames=[]
for files in os.listdir(img_path ):
if files.endswith('jpg') or files.endswith('jpeg') or files.endswith('png'):
file=os.path.join(img_path ,files)
filenames.append(file)
images = []
for filename in filenames:
images.append(imageio.imread(filename))
imageio.mimsave(os.path.join(img_path, 'wave.gif'), images,duration=0.0001)
最终得到有边界为0、吸收条件结果如下:
生成gif的代码如上,但有闪烁的问题如上图所示,本人无法解决,若有知道如何解决的,在线求教。