PageRank算法

一、简介

        PR算法,全称为PageRank算法,是一种基于网页间链接关系的排名算法,由Google的创始人拉里·佩奇和谢尔盖·布林于1998年提出。该算法的基本思想是,网页的重要性排序是由网页间的链接关系所决定的,一个网页的PR值不仅考虑指向它的链接网页数,还有指向“指向它的网页”的其他网页本身的重要性。PR算法建立在随机冲浪者模型上,通过迭代计算,为每个网页确定一个PR值,该值代表了网页的重要性和受欢迎程度。

二、特性

  1. PR值的传递性:网页A指向网页B时,A的PR值也部分传递给B。
  2. 重要性的传递性:一个重要网页比一个不重要网页传递的权重要多。

PR算法的计算公式为:PR(A)=(1-d)+d(PR(t1)/C(t1)+…+PR(tn)/C(tn)),其中A代表页面A,PR(A)则代表页面A的PR值,d为阻尼指数,通常认为d=0.85,t1…tn代表链接向页面A的页面t1到tn,C代表页面上的导出链接数目,C(t1)即为页面t1上的导出链接数目。

PR算法具有很多优点,例如它是一个与查询无关的静态算法,所有网页的PageRank值通过离线计算获得,有效减少在线查询时的计算量,极大降低了查询响应时间。此外,PR算法具有很好的抗作弊性,能够自动忽略作弊网页,保证排名的公正性。

然而,PR算法也存在一些缺点。例如,它对新网页不够友好,因为新网页通常没有足够多的链接指向它,导致它的PR值较低。此外,PR算法也容易被恶意攻击者利用,通过制造大量的虚假链接来提高某个网页的PR值,从而破坏整个网页排名系统的公正性。

为了改进PR算法,研究者们提出了很多方法,例如考虑网页内容的质量、用户行为等因素,以及使用机器学习方法来预测网页的排名等。这些改进方法在一定程度上提高了PR算法的准确性和公正性,使得网页排名更加符合用户的实际需求。

三、实现

1.Java实现

import java.util.*;  
  
public class PageRank {  
    private static final double DAMPING_FACTOR = 0.85;  
    private static final double ERROR_TOLERANCE = 0.00001;  
    private Map<String, Integer> pageRanks;  
    private Map<String, List<String>> links;  
  
    public PageRank(Map<String, List<String>> links) {  
        this.links = links;  
        this.pageRanks = new HashMap<>();  
        for (String page : links.keySet()) {  
            pageRanks.put(page, 1.0);  
        }  
    }  
  
    public void computePageRanks() {  
        double sumOfPageRanks;  
        do {  
            sumOfPageRanks = 0.0;  
            for (String page : pageRanks.keySet()) {  
                sumOfPageRanks += pageRanks.get(page);  
            }  
  
            for (String page : pageRanks.keySet()) {  
                List<String> outboundLinks = links.get(page);  
                if (outboundLinks == null || outboundLinks.isEmpty()) {  
                    continue;  
                }  
  
                pageRanks.put(page, (1 - DAMPING_FACTOR) +  
                        DAMPING_FACTOR * (pageRanks.get(page) / outboundLinks.size()));  
  
                for (String outboundLink : outboundLinks) {  
                    pageRanks.put(outboundLink,  
                            pageRanks.get(outboundLink) +  
                                    (DAMPING_FACTOR * pageRanks.get(page) / outboundLinks.size()));  
                }  
            }  
  
            sumOfPageRanks = 0.0;  
            for (double rank : pageRanks.values()) {  
                sumOfPageRanks += rank;  
            }  
  
        } while (Math.abs(sumOfPageRanks - (pageRanks.size() * (1.0 - DAMPING_FACTOR))) > ERROR_TOLERANCE);  
    }  
  
    public Map<String, Double> getPageRanks() {  
        return pageRanks;  
    }  
  
    public static void main(String[] args) {  
        Map<String, List<String>> links = new HashMap<>();  
        links.put("A", Arrays.asList("B", "C"));  
        links.put("B", Arrays.asList("C", "D"));  
        links.put("C", Arrays.asList("A"));  
        links.put("D", Collections.emptyList());  
  
        PageRank pageRank = new PageRank(links);  
        pageRank.computePageRanks();  
        Map<String, Double> ranks = pageRank.getPageRanks();  
  
        for (Map.Entry<String, Double> entry : ranks.entrySet()) {  
            System.out.println(entry.getKey() + ": " + entry.getValue());  
        }  
    }  
}

2.Python实现

import numpy as np  
  
def pagerank(graph, num_iterations=100, d=0.85):  
    N = len(graph)  
    M = np.zeros((N, N))  
      
    # Build the adjacency matrix  
    for i, out_links in enumerate(graph):  
        for j in out_links:  
            M[i, j] = 1.0  
      
    # Initial guess  
    v = np.random.rand(N, 1)  
      
    # Iterate  
    for i in range(num_iterations):  
        v = (1 - d) / N + d * M.T @ v  
      
    return v  
  
# Example usage  
graph = {  
    'A': ['B', 'C'],  
    'B': ['C', 'D'],  
    'C': ['A'],  
    'D': []  
}  
  
ranks = pagerank(graph)  
for node, rank in zip(graph.keys(), ranks.flatten()):  
    print(f"{node}: {rank}")

  • 6
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值