边缘计算卸载论文翻译于分析总结

目录

论文题目:Game Theory based Joint Task Offloading and Resources Allocation Algorithm for Mobile Edge Computing

(翻译)基于博弈论的移动边缘计算联合任务卸载与资源分配算法

Game Theory based Joint Task Offloading and Resources Allocation Algorithm for Mobile Edge Computing


论文题目:Game Theory based Joint Task Offloading and Resources Allocation Algorithm for Mobile Edge Computing

(翻译)基于博弈论的移动边缘计算联合任务卸载与资源分配算法

摘要:移动边缘计算(MEC)通过允许移动用户将计算密集型任务卸载到MEC服务器来降低能耗和延迟。由于小区网络中的频谱复用,小区间干扰对MEC的性能有很大影响。在本文中,为了降低MEC的能耗和延迟,我们提出了一种基于博弈论的方法,将任务卸载决策和资源分配结合在MEC系统中。在该算法中,将移动用户的卸载决策、CPU容量调整、传输功率控制和网络干扰管理视为一场游戏。在这个游戏中,基于最佳响应策略,每个移动用户都会使自己的效用最大化,而不是整个系统的效用。我们证明了该博弈是一个完全势博弈,并且该博弈存在纳什均衡。为了到达NE,采用最佳响应方法。我们计算这三个变量的最佳响应。此外,我们还研究了该算法的性质,包括收敛性、计算复杂性和无政府价格(PoA)。理论分析表明,小区间干扰对MEC的性能影响很大。这个游戏的核心是帕累托效率。最后,通过仿真评估了该算法的性能。仿真结果表明,该算法能够有效地提高多用户MEC系统的性能。

关键字:移动边缘计算,任务卸载,传输功率控制,博弈论,干扰。

1 引言

A 动机和问题陈述

任务卸载和资源分配对多用户MEC的性能至关重要[1-4]。首先,适当的卸载决策和资源分配策略可以大大提高多用户MEC的性能,如降低能耗和执行延迟。其次,由于MEC服务器和移动设备中的网络资源(如能量、内存空间、计算能力)都是有限的,因此选择合适的任务卸载决策和资源分配策略以使系统效用最大化是有效的。任务卸载是指移动用户根据该任务的能耗和执行延迟,选择将计算任务卸载到MEC服务器或本地计算。资源分配是指MEC服务器或移动用户选择合适的网络资源(如传输功率、CPU容量、通信信道等)来降低MEC的能耗和执行延迟[8-15]。此外,由于卸载决策和资源分配是相关的,可以相互影响,因此最有效的方法是联合优化这两个项目,而不是单独优化。实现上述目标有两种不同的方法:传统优化方法(如凸优化[8-15])和基于博弈论的方法[5-6]。到目前为止,传统的优化方法已经得到了很好的研究。然而,这种方法有一些局限性,例如MEC服务器和移动用户之间复杂的信息交换负担沉重,计算复杂度高等。即使基于博弈论的方法可以克服传统优化方法的缺点(这将在本文的其余部分详细解释),基于博弈论的方法研究才刚刚起步仍有许多问题需要研究,如电源控制、干扰管理等。

因此,本文研究的基本问题可以概括为:如何基于博弈论将卸载决策和资源分配结合起来,以提高MEC的性能,即如何降低能耗和执行延迟?这是一个挑战,因为卸载决策和资源分配是相关的,并且可能相互影响[24]。

B 现有技术的局限性

传统优化方法和基于博弈论的方法都有一些局限性[56]。首先,即使传统优化方法在改善MEC性能方面是有效的,它也有三个不容忽视的缺点[5-6]:(1)因为传统优化方法的优化目标是整个系统的效用,因此,从移动设备收集大量信息,并在移动设备和MEC服务器之间进行大量信息交换;(2) 由于不同的移动设备通常由不同的个人拥有,他们可能追求不同的利益,因此传统的优化方法在反映移动用户之间的交互方面能力有限;(3) 传统优化方法计算复杂度高;一方面,优化目标复杂;另一方面,由于优化目标复杂,最优解的计算也很复杂,如解耦、凸优化等。第二,近年来提出了基于博弈论的方法。然而,一方面,基于博弈论的方法研究才刚刚起步;如[5]和[6]中提出的算法;另一方面,目前基于博弈论的方法只考虑卸载决策和渠道分配。对于MEC系统来说,这远远不够。

C 提议的方法和相对于现有技术的优势

本文提出了一种基于博弈论的方法,将任务卸载决策和资源分配结合在MEC系统中。在该算法中,将移动用户的卸载决策、CPU容量调整、传输功率控制和网络干扰管理视为一场游戏。在这个游戏中,基于最佳响应策略,每个移动用户都会使自己的效用最大化,而不是整个系统的效用。基于该算法,系统可以达到平衡状态,性能可以得到优化。

所提出的算法解决了现有技术的局限性,概括如下。与传统的优化方法相比,该方案在多用户MEC系统中具有处理多参数的能力,即在干扰环境下联合优化卸载决策、传输功率和CPU容量;然而,我们提出的算法具有较低的计算复杂度和信息交换,因此可以克服传统优化方法的缺点。与基于博弈论的算法(即[5]和[6]中提出的算法)相比,除了卸载决策、信道分配和CPU容量之外,我们提出的算法还可以在干扰感知多用户MEC系统中考虑传输功率控制;因此,我们提出的算法比文献[5]和[6]中提出的算法具有更好的性能。

D 技术挑战和解决方案

解决第一节A中提出的问题存在一些技术挑战。第一个技术挑战是在游戏中将卸载决策、CPU容量调整、传输功率控制和信道分配结合在一起。这是一个技术挑战,因为有两个原因:(1)通信信道和传输功率的可行区域不是连续的;沟通渠道明显不连续;然而,由于干扰,传输功率应使MEC服务器的信干噪比(SINR)大于阈值;因此,传输功率的可行范围应为(2) 这些参数是相关的,所以游戏到达NE很复杂。为了解决这个挑战,首先,我们在算法中引入了博弈;基于[19-20,28]中提出的理论,我们考虑邻居的效用来构造势函数,并证明了该博弈的NE存在;其次,我们在算法中引入最佳响应策略以达到NE。在执行过程中,首先,移动用户从基站(BS)获取信道干扰信息;根据信道干扰信息,每个移动用户在本地计算卸载决策的最佳响应、传输功率和CPU容量;每个移动用户都会根据这些值调整其卸载决策、传输功率和CPU容量。此过程将重复,直到到达游戏的NE。第二个技术挑战是计算卸载决策、传输功率和CPU容量的最佳响应。这是一个技术挑战,因为不同用户之间的交互使计算变得困难。为了解决这一技术挑战,在本文中,我们提出了一组算法来计算这四个参数的最佳响应。第三个技术挑战是证明所提出的算法是有效的,并且能够达到NE。这是一个技术挑战,因为提出的基于博弈论的算法比以前的工作考虑了更多的参数,这使得对提出的算法的分析变得困难。为了应对这一挑战,本文证明了:(1)我们提出的基于博弈论的算法是收敛的,并且该博弈的NE是存在的,是帕累托效率;(2) 我们提出的算法是多项式局部搜索完成的,这意味着我们的算法可以在多项式时间内完成;(3) 我们提出的算法的计算复杂度为 (4) 减少移动用户之间的干扰可以有效地提高MEC的性能。

2 相关工作

MEC的主要目的是通过仔细设计任务卸载方案和资源分配方式来降低能耗和延迟[1-4],这在单用户和多用户MEC系统中都是单独或联合学习的[6-18]。在[6]中,作者提出了一种博弈论方法,可以实现移动云计算的高效计算卸载;[5]中的作者将[6]中的结论应用到多用户MEC系统中,提出了一种基于博弈论的卸载决策算法;在该算法中,移动用户决定是否将任务卸载到MEC服务器,以及以分布式方式使用哪些通信信道。然而,在这两种算法中,只考虑了干扰、CPU容量和卸载决策。即使这两篇论文的作者提出功率控制是一种潜在的方法,可以最小化网络干扰并提高MEC的性能,但他们没有找到解决这个问题的方法。在[7]中,作者为包括顺序组件依赖关系图和支持多无线电的移动设备的应用程序提出了一种最佳卸载策略。与[7]中显示的算法不同,[8]中的作者解决了任意依赖关系图的任务卸载问题。在[9]中,作者提出了一种有效的MEC系统计算模型,它将计算和通信协作结合在一起,以提高系统性能。

正如[1]和[2]中提出的观点,卸载决策和资源管理对于提高MEC系统的性能都很重要。资源管理包括通信信道分配、CPU容量控制、传输功率控制等[10]。例如,[10]中联合学习了任务卸载决策和计算频率缩放;本文通过联合优化移动用户的任务分配决策和CPU频率来最小化延迟和能耗。在[11]中,移动设备的计算速度和传输功率以及卸载比通过动态电压缩放技术进行了联合优化,以减少能耗和延迟。在[12]中,研究了单用户场景下MEC系统中的传输功率控制和卸载决策。作为改进,[13]和[14]中的作者将[12]中的结论扩展到多用户MEC系统,并结合资源分配,通过Lyapunov优化来提高多用户MEC系统的性能。与[13]类似,[15]中的作者提出了一种多服务器多用户MEC系统的集中式算法,它将任务卸载和资源分配结合在一起。在[16]中,通过虚拟机迁移和传输功率控制,减少了MEC中的服务延迟;用户以循环方式向cloudlet传输数据,通过控制cloudlet的传输功率来减少服务延迟。在[17]中,提出了MEC系统中计算卸载和干扰管理的集成框架。我们还研究了多用户干扰感知MEC系统中的传输功率问题[39];然而,在[39]中,没有考虑任务卸载决策。但是,[12]是针对单用户MEC系统提出的;[16]中提出的算法主要针对cloudlet,而不是移动用户;[13]、[14]、[15]和[17]中提出的算法在多用户MEC系统中是有效的,但它们是集中式的;此外,对于上述算法,假设传输功率的可行域为0到最大;然而,由于干扰的存在,传输功率应使MEC服务器的SINR大于阈值;因此,传输功率的可行范围应为, 这对计算移动用户的传输功率提出了新的挑战。

 

3 系统模型

网络中有N个移动用户,表示为 N= {1, 2, … ,N}. 移动用户由BS提供服务。在MEC中,FDMA用于上层链路通信,用于将任务从移动用户卸载到MEC服务器[18-20]。在FDMA中,可用频谱被划分为K个子信道,这些子信道的索引为K = {1, 2, … ,K}. 在本文中,如[10-15]所述,我们只考虑固定信道分配,即信道已经由基站分配给移动用户;在下一版本中,我们将考虑在该算法中引入信道分配,这是有趣且具有挑战性的。在MEC系统中,每个移动用户都有一个计算密集型任务,可以在本地计算或通过部署在用户附近的BS卸载到MEC服务器。移动用户有两种卸载模式[1]:二进制卸载和部分卸载。在本文中,为了统一这两种模式,我们将卸载比率(如[9]和[11]中使用的比率)引入卸载决策。

定义1.卸载比率定义为卸载到MEC服务器的计算任务的比率;当\lambda = 0或\lambda= 1时,是二进制卸载;当\lambda∈(0,1),它是部分卸载。 

根据定义1,本地执行的计算任务的比率为1− \lambda,l移动用户的传输功率可以从. 在无线网络中,最小传输功率应使SINR大于阈值[18]。请注意,当\lambda = 0,计算任务将在本地执行,这意味着p = 0; 当\lambda ≠ 0,任务需要卸载到MEC服务器,并且p≠ 0; 因此,考虑任务卸载决策和SINR的输电功率可行范围为 这意味着输电功率的可行域不再是连续的,这将对输电功率控制提出挑战。

为了更清楚,下表列出了本文中使用的符号。

表一(本文使用的符号)

A 通信模型

注意,这里我们重点研究无线干扰模型下的计算卸载问题。该模型可以很好地捕获蜂窝通信场景中用户的平均总吞吐量,并且一些物理层信道接入方案可以允许多个用户同时高效地共享相同的频谱资源。我们将信道k中用户n的干扰用户集定义为:使用信道k向MEC服务器传输数据的移动用户集,表示为I_{n}^{k}. 因此,用户n使用通道k通过通道k将任务卸载到MEC服务器的干扰为:\Gamma_{n}^{k}=\sum_{i \in I_{n}^{k}, \lambda_{j}>0} p_{i} G_{i},根据Shannon Hartley公式[24],移动用户n的传输速率可以计算为:

r_{n}^{k}(\lambda, \boldsymbol{p})=\omega_{k} \log _{2}\left(1+\frac{p_{n} G_{n}}{N_{0}+\Gamma_{n}^{k}}\right) 

其中是无线信道带宽;N0是高斯白噪声的功率;Gn是移动用户n和BS之间的信道增益;\lambda是移动用户的卸载决策集\lambda=\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N}\right\}; p是移动用户的传输功率集\boldsymbol{p}=\left\{p_{1}, p_{2}, \ldots, p_{N}\right\}. 从(1)可以看出,移动用户n的传输速率不仅与其传输功率和卸载决策有关,还与干扰用户有关。用户n的传输受干扰用户的影响,用户n也影响其他用户的传输。由于用户n与其干扰用户之间的交互作用,功率控制与卸载决策是耦合的。

 

为了量化干扰,定义了两种用户n的干扰集:(1)在用户集I_{n}^{k}且可以影响用户n数据传输的用户集定义为I_{n}^{k, i n}其中 I_{n}^{k, i n}I_{n}^{k}  (2) I_{n}^{k}中的用户集且可以受到用户n的数据传输的影响,定义为I_{n}^{k, o u t}其中I_{n}^{k, o u t}I_{n}^{k} . 在下面,我们将证明这两个干涉集是相等的。在MEC中,当用户i决定将其任务卸载到MEC服务器时,用户i在MEC服务器上的SINR应大于阈值;用户i的干扰来自使用与用户i相同信道的用户;使用此通道并将任务卸载到MEC服务器的所有用户都可以干扰用户i的任务卸载。同样,用户i可以干扰使用与i相同通道的所有用户。因此,我们有I_{n}^{k}=I_{n}^{k, o u t}=I_{n}^{k}. 此外可以从MEC服务器获取。在本文的下面,我们将使用代表I_{n}^{k}代表 I_{n}^{k, o u t}I_{n}^{k}.

 B 计算模型

对于移动用户n,有一个计算任务T_{n}=\left\{L_{n}, C_{n}\right\} 可以在本地计算或卸载到MEC服务器。Ln是输入数据的长度(位),Cn是计算工作量(一位数据所需的CPU周期)。

B.1 局部执行的计算模型

什么时候\lambda _{n}= 0,计算任务Tn在本地执行,然后p_{n}= 0和; 因此,计算该任务的延迟可以显示为:

t_{n}^{\text {local }}=\frac{L_{n} C_{n}}{f_{n}}

其中f_{n}是用户n每秒的CPU周期(即计算能力),上限为f_{max}. 不同的移动用户具有不同的计算能力,每个移动用户可以将其计算能力从0调整为t_{n}^{\text {local }}=\frac{L_{n} C_{n}}{f_{n}}根据[5]和[13],计算任务Tn的能耗为:

在(3)中,是与移动设备n的硬件架构相关的常数。动态功耗与成比例, 其中Vc是电路电源电压。当工作电压较低时,CPU频率与电源电压近似成线性比例[1325-26]。因此,一个CPU周期的能耗为.根据(2)和(3),基于[5]中定义的开销,本地计算的开销为:

其中分别表示用于用户n决策的计算延迟和能量的权重[5,6]。当用户n关心能耗时,用户n可以设置.否则,当用户n对延迟敏感时,用户n可以设置。该模型可以同时将计算延迟和能量消耗纳入决策。在实践中,可以通过多准则决策理论中的多属性效用方法确定适当的权重[27]。

B.2 MEC服务器的计算模型

> 0,部分或全部计算任务卸载到MEC服务器,其中.假设分配给移动用户n的通信信道为k,将输入数据传输到MEC服务器的延迟可以计算为:

如果移动用户n通过通道k向MEC服务器传输计算任务的传输功率为,数据传输的能耗为:

当输入数据卸载到MEC服务器时,MEC服务器根据输入数据计算计算任务。根据(2),MEC服务器中任务执行的延迟为:

其中是MEC服务器每秒的CPU周期。

因此,基于(5)、(6)和(7),云计算的开销可以计算为:

根据卸载决策比率、本地计算的输入数据的长度为(1−)Ln以及卸载到MEC服务器的输入数据的长度为Ln[9][11]因此,考虑到本地计算和云计算的开销,用户n的整个计算开销可以计算为:

4 联合任务卸载和资源分配游戏

根据第1.3节,本文需要解决的问题如P1所示:

根据(10)所示的P1,我们将多用户游戏定义为:是移动用户n的策略空间,分别是用户n的卸载决策、传输功率和CPU容量的策略空间,

然而,如(1)所述,用户n的卸载决策可能会影响用户在的性能; 此外,根据[19]、[20]和[28]中的结论,将单个计算开销定义为每个用户的效用的这个方法是自私的。因此,将由传记系统中的本地合作所激发的相邻用户之间的本地无私主义行为[29-30]引入效用函数构造[19-20,28]。在游戏G中,当用户n的策略改变时,用户的计算开销会受到影响;因此,在新的开销函数中,最好将用户的计算开销算进来[19][20][28],可以表示为

其中当用户策略是意味着用户的策略,在(12)中,右边的第一项是用户n的计算开销;第二个项是中用户的聚合计算开销,新的本地的无私主义游戏是:

基于游戏在(13)中的定义,我们定义了游戏的NE如下所示

定义2.战略概况是游戏的NE, 如果在NE点s*,则任何移动用户都无法通过单方面更改策略来减少其计算开销。数学公式表达式为:

在NE点,当其他用户不改变策略时,每个用户都找不到比当前策略更好的策略。这个属性对于分布式问题很重要,因为每个移动用户都会根据自己的兴趣最小化自己的开销,这将减少移动用户与MEC服务器之间的信息交换。

A 纳什均衡的存在性和性质

由于计算开销和传输能力的战略空间是不连续的,所以我们引入了势对策来证明NE的存在唯一性。为了证明是一个势博弈,首先,我们在定义3中定义势博弈。

定义3[31][32]。如果存在势函数使得,那么博弈就是完全势博弈以下条件成立:

备注1:对于确切的游戏,如果任何移动用户改变其策略(即), 开销函数的变化等于势函数的变化。博弈的重要特性是,总是存在一个NE,异步更好的响应更新过程必须是有限的,并导致一个NE[31-32]。

定理1.(13)中所示的游戏是一个完全博弈,并且游戏游戏总是具有纳什均衡和有限改进性质

证明:根据[19]、[20]和[28]中的结论,我们将势函数定义为:

  1. 可分为三个术语。右边第一个术语是移动用户n的计算开销;第二个术语表示用户间接费用的汇总; 第三项是网络中其余移动用户的计算开销。因为在Sn中有三个变量, 所以会有Sn的不同的变化模型如果我们根据所有Sn的变化模型计算计算开销函数和势函数的变化,这将是复杂的。然而Sn中的变量可分为两组:1) 这两个变量不仅会影响用户n的开销,还会影响表示为的用户2) 当这个变量改变时,只有用户n的开销会受到影响,表示为

变化,即改变或这两个变量都改变,无论是否发生变化,用户n和中用户的开销,其余用户(即) 的计算开销不会改变不要改变,因为用户n的策略改变不会影响不在.。当用户n的策略从,计算开销的偏差可以计算:

根据(15),势函数的变化为:

根据[5]、[31]、[32]和[34]中的结论,游戏是一个完全势博弈,所以它总是具有纳什均衡和有限改进性质。

4.2最佳应对策略

对于确保NE存在的博弈,最优响应动态总是收敛于NE[33-34],因此在该算法中应用它来达到博弈的NE。在最佳响应策略中,每个移动用户根据从BS获得的信息计算s中变量的最佳响应,即,对于给定的, 用户n基于(12)计算的最佳响应。

推论1

证明

5 性能分析

5.1 收敛性和计算复杂性

在[31]和[32]中,作者证明了对于任何势博弈,最佳响应动力学总是收敛于纯纳什均衡。博弈是一个完全势对策,因此本文提出的算法是收敛的。

推论5.通过最佳响应方法找到博弈的NE是PLS完全,计算复杂度为

证明在[31]和[32]中,作者证明了对于在到达NE的过程中应用最佳响应方法的势博弈,如果最佳响应可以在多项式时间内计算,则该问题是PLS(polynomial Local Search)完全问题。在博弈中, 每个时隙需要计算三个最佳响应,分别是和,计算的最佳响应的计算复杂性 ,因为是常量。对于计算最佳响应,采用牛顿法。在[35]中,作者证明了 牛顿法的计算复杂度为, 其中是的计算成本。此外,在博弈中,. 因为都是多项式,所以也是多项式。这意味着的计算可以在多项式时间内完成。因此,最佳响应的计算可以在多项式时间内完成。根据推论4,最佳响应与的计算相关,因此,计算也可以在多项式时间完成。

对于博弈,在每个时隙,计算复杂性与最佳响应和有关. 如推论5所示的计算复杂度是,这比简单得多, 可以忽略。此外,当被得到了,最佳响应计算的复杂性也很简单,如(23)所示。因此,该算法的主要计算复杂性是由计算即牛顿法。所以在一次性时隙中博弈的计算复杂度是,其中是的计算成本 根据(18)的计算成本是。因此,该算法在一次性时隙中的计算复杂度为. 假设该算法需要C轮迭代才能达到NE,则该算法的计算复杂度为[5]:. 这表明算法可以在多项式时间完成。因此,推论5成立。

在本节中,我们学习整个网络的计算开销的PoA,即,根据[36]中的结论,PoA定义为:

其中是博弈的NE,是所有移动用户的集中式最佳解决方案,是基于博弈论算法的用户n的开销;是集中式算法的开销。PoA表示NE最坏情况与集中式最优解决方案的效率比。对于MEC,PoA越小,性能越好[5]。

推论6.博弈, 网络计算开销的PoA满足:

证明 假设是博弈的NE,是所有移动用户的集中优化解决方案。根据[5]和[31]中的结论,由于集中式优化算法的性能优于基于博弈论的算法,因此PoA≥ 1.

对于基于博弈论的算法,当= 1,用户n的传输速率满足:

对于集中式优化算法,当= 1,传输速率满足:

因此,根据(27)、(28)、(30)和(31),推论6成立。

注意,PoA反映了基于博弈论的算法相对于集中式优化算法的最坏原因;因此,根据推论6,我们可以得出结论,随着来自干扰用户的干扰减少,PoA将减少。这表明,控制网络干扰可以有效地提高MEC的性能,这与结论4中的结论一致。

推论7博弈的NE是帕累托效率。

证明

6 数值结果

在本节中,我们将通过仿真展示所提算法的性能。在本次模拟中,移动用户随机部署在基站的覆盖区域,数量从8到20不等。无线信道的带宽为20MHz,子信道的数量为10。用户的传输功率从到; 这个可以根据第4节中的SINR阈值和测量的干扰进行计算;这个设置为150mW。噪声为-100dBm[26]。通道增益Gn=[26],其中是移动用户n和基站l之间的距离;是设置为4的路径损耗因子。与[5]类似,在本模拟中,Ln= 5000Kb和Cn = 1000兆周。CPU计算能力为10GHz。决策权重,所以我们设置 [5]. 对于每个移动用户,和[13]。

6.1 游戏的融合

结果表明,对于我们提出的基于博弈论的算法,卸载决策、传输功率、CPU容量和每个用户的开销都可以覆盖到NE点。图1(a)显示了卸载决策的收敛性。与推论1中证明的相同,λ的值随着迭代次数的增加收敛到0或1。如图1(b)所示,CPU容量的值也是二进制的,即.此外,CPU容量值和卸载决定值相反,如图1(a)和图1(b)所示。这与第4节中的理论分析一致。移动用户的传输功率如图1(c)所示,它是收敛的,小于, 与CPU能力不同,当卸载决策为1时,传输功率大于0;否则,传输功率等于0。图1(d)表明每个移动用户的计算开销也是收敛的。

6.2 干扰的影响

我们的结果表明,减少干扰可以有效地提高所提算法的性能,这与推论6的结论一致。图2显示了当干扰增加时,PoA的变化。在这个模拟中,我们使用表示干扰的影响,其中并且㼿是用户n的SINR。因此,越大,干扰越大。随着干扰的增加,PoA增加。当1/SINR的值固定时,如0.7,PoA随着网络密度的增加而减小。这是因为当值为固定时,网络中的用户越多,每个用户的干扰越小,这也意味着PoA越小。

6.3 用户数量的影响

我们的结果表明,用户数量对算法的性能有很大影响:首先,网络中的用户越多,将任务卸载到MEC服务器的用户越多;第二,网络中的用户越多,网络计算开销越大;第三,用户越多,到达NE点的时间越长。图3显示了在不同网络密度下,将计算任务卸载到MEC服务器的用户数。由于该算法是收敛的,将任务卸载到MEC服务器的用户数量将保持不变。在到达NE点之前,随着迭代时间的增加,移动用户中的资源被消耗,越来越多的移动用户选择将计算任务卸载到MEC服务器。这是因为MEC服务器比移动用户具有更好的计算能力和资源。当网络密度增加时,将任务卸载到MEC服务器的用户数量会增加。然而,当网络密度较大时,这种增加会变得缓慢,因为在这种情况下,干扰很严重。

图4显示了不同网络密度下的网络开销。与图3所示的结果不同,在图4中,随着迭代时间的增加,网络开销在到达NE点之前减少。当网络到达NE时,网络开销保持稳定。结果表明,该算法在减少网络计算开销方面是有效的。对于不同的网络密度,网络中的用户越多,计算开销越大。这是因为用户越多,干扰越严重,导致网络计算开销较高。然而,由于不同用户之间的博弈,计算开销的增加随着网络密度的增加而变得缓慢。这意味着该算法在改善MEC性能方面是有效的。不同网络密度下到达NE的迭代次数如图5所示。由于干扰,用户越多,到达NE点所需的迭代次数就越多。增长接近线性,这意味着算法可以快速收敛。

6.5 任务大小的影响

结果表明,任务的大小对算法的性能也有很大影响;任务规模越大,选择将任务卸载到MEC服务器的用户越多,网络计算开销越大。如图3所示,如果输入数据长度增加,在相同网络密度下将任务卸载至MEC服务器上的用户数量也会增加。这是因为当任务大小增加时,本地执行的计算开销增加,这可以在(23)中找到;因此,更多的用户会将他们的计算任务卸载到MEC服务器,以节省能源和减少延迟。图4还表明,当计算负载增加时,网络开销也会增加。其原因与图3所示类似。

7 总结

在本文中,我们做出了以下主要贡献。首先,我们提出了一种基于博弈论的多用户MEC联合卸载决策和资源分配算法。其次,我们证明了该博弈是一个完全势博弈,并且该博弈的NE存在且唯一。第三,研究了该算法的收敛性和计算复杂度。第四,我们研究了该算法的PoA,得出了干扰用户的干扰对MEC性能的主要影响,这与推论4中的结论一致。第五,我们证明了该博弈的NE是帕累托效率,也是(10)中所示的全局最优解。仿真结果也表明了该算法在改善MEC性能方面的有效性。

(以上内容因为涉及公式太多,公式部分大多为放进去,可参考原文献阅读)

分析

研究目的内容:将任务卸载决策和资源分配进行联合优化,将移动用户的卸载决策、CPU容量调整、传输功率控制和网络干扰管理视为博弈,基于博弈论将卸载决策和资源分配结合起来,以提高MEC的性能,降低能耗和执行延迟

针对的问题:任务卸载和资源分配对多用户MEC的性能至关重要为了降低MEC的能耗和延迟,我们提出了一种基于博弈论的方法,将任务卸载决策和资源分配结合在MEC系统中。

解决方案:。因为卸载决策和资源分配是相关的,可以相互影响,所以文中联合优化这两个项目,本文设计的博弈是一个完全的势博弈,经过有限次迭代可以达到纳什均衡。其中为了到达NE,采用了最佳响应方法,基于最佳响应策略,每个移动用户都会使自己的效用最大化,而不是整个系统的效用。博弈的核心是帕累托效率。本文提出了一种基于博弈论的方法,将任务卸载决策和资源分配结合在MEC系统中。在该算法中,将移动用户的卸载决策、CPU容量调整、传输功率控制和网络干扰管理视为一场游戏。在这个游戏中,基于最佳响应策略,每个移动用户都会使自己的效用最大化,而不是整个系统的效用。基于该算法,系统可以达到平衡状态,性能可以得到优化。

拓展调研:有文献提出过将博弈分为普通势博弈,一般普通势博弈、完全博弈、加权博弈的概念。势博弈是策略博弈的一个子集,每个势博弈都服从一个是函数。势博弈的每个主体经过有限次的迭代决策,会不断朝着最优的目标函数前进,也一定能够为目标函数找到最优解,经过有限次迭代后可以达到纳什均衡。势函数根据单方面的偏差,可以量化回报上的差距,如果这个量化是精确的,称之为完全势博弈,完全势博弈应用最广

好的点:设计的农艺是一个精确的完全博弈,存在纳什均衡,联合优化了卸载决策与资源分配

  • 2
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 边缘计算是一种分布式计算架构,通过将计算任务从中央服务器转移到边缘设备上进行处理,可以实现低延迟、高可靠性和保护用户隐私等优势。而代码是指将某些计算任务从边缘设备上下来,交由云服务器进行处理。 Python作为一种高级编程语言,在边缘计算中也可以使用。Python的代码主要是通过将某些计算密集型的任务或需要大量计算资源的任务从边缘设备上转移到云服务器上运行,从而减轻边缘设备的负担,提高整个系统的效率。 在进行Python边缘计算代码时,首先需要将边缘设备上的相关任务进行分析和筛选,确定哪些任务适合进行。然后,将这些任务的代码通过网络传输到云服务器上,并在云服务器的环境中进行设置和配置。云服务器上的Python环境需要与边缘设备上的环境保持一致,以确保代码的顺利执行。 使用Python进行边缘计算代码时,还需要考虑网络传输的延迟和稳定性。边缘设备与云服务器之间的通信需要保证延迟尽可能低,并且网络连接的稳定性要好,以保证数据的及时传输和代码的准确执行。 总之,Python边缘计算代码是一种将计算任务从边缘设备转移到云服务器的技术,可以提高整个系统的效率和性能。在实际应用中,需要根据具体情况进行任务分析和代码的策略确定,以达到最佳的效果。 ### 回答2: 边缘计算是一种分布式计算模型,它将计算任务从云端的数据中心移动到边缘设备上进行处理和分析。Python作为一种高级编程语言,可以在边缘设备上进行编码和运行。 边缘计算代码是指将一部分计算任务从云端移动到边缘设备上进行处理。这样做的好处有三个方面: 首先,边缘设备通常具有更强的计算能力和存储能力,能够更快地响应和处理计算任务。通过一部分代码到边缘设备上运行,可以减少云端的计算压力,提高响应速度和处理效率。 其次,边缘设备可以直接访问本地存储,无需通过网络传输数据。当一些计算任务的数据量较大时,传输数据会造成较大的时间延迟。将代码到边缘设备上进行处理,可以减少数据传输的时间延迟,提高数据处理的效率。 第三,边缘计算可以提供更好的隐私保护。将一部分敏感数据和计算任务保留在边缘设备上,可以减少数据通过网络传输的风险,保护用户的隐私。 总而言之,Python边缘计算代码可以提高计算任务的响应速度和处理效率,减少数据传输的时间延迟,以及提供更好的隐私保护。这对于一些实时性要求高、数据量大或者涉及敏感数据的应用场景具有重要意义。 ### 回答3: Python边缘计算代码是指将原本在中央节点上运行的代码迁移到边缘设备上执行。它可以通过将计算任务分配到靠近数据产生源头的边缘设备上执行,以减少对中央节点的依赖和网络传输延迟,提高计算效率和响应速度。 在实际应用中,Python边缘计算代码的实现可以遵循以下几个步骤: 1. 识别适合边缘计算的任务:根据任务的计算量、数据传输量和时延要求等因素,选择适合边缘设备执行的任务。一般来说,对于计算量较大、数据处理密集、响应速度要求高的任务,边缘计算更加合适。 2. 选择合适的边缘设备:根据任务的要求,选择靠近数据源和需求端的边缘设备。这些设备可以是边缘服务器、边缘网关、传感器节点等。 3. 编写适应边缘设备的Python代码:根据边缘设备的硬件特性和计算资源,针对性地优化原有的Python代码,例如降低计算复杂度、减少资源消耗等。 4. 部署和调度边缘计算任务:将编写好的Python代码部署到边缘设备上,并结合边缘计算调度策略,在边缘设备之间动态地分配计算任务,实现计算。 5. 监控和优化边缘计算过程:监测边缘设备的计算性能、网络延迟等指标,及时发现和解决问题,并根据实时性能数据进行优化调整,以提高计算效率和响应速度。 通过Python边缘计算代码,可以实现将计算任务从中央节点迁移到边缘设备上,减轻中央节点的负担,提高系统的整体性能和效率。同时,它也可以应用于各种边缘计算场景,如物联网、智能城市、工业自动化等,为这些领域带来更好的计算体验。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值