Kyoya and Colored Balls(排列组合+逆元法)

【问题】

k种颜色,每种颜色有n个球,每球都一样,问这些球有多少种排列方式
限定条件:每种第i种颜色的最后一个球后面必须是i+1颜色的球

【思路】

最后一个球固定是第k种颜色的球,然后其他位置随机放k颜色剩下的球有 C s u m − 1 a [ i ] − 1 C^{a[i]-1}_{sum-1} Csum1a[i]1种,sum为剩下位置的数目,a[i]是第i种颜色球的数目
具体操作,初始化排列组合的数组,然后逆元法从最后一种颜色的球开始往前排列

【源代码】

#include<iostream>
#include<cstdio>
#include<string>
#include<cstdlib>
#include<cmath>
using namespace std;
#include<stack>
#include<cstdlib>
#include<string>
#include<cstdio>
#include<cstring>
#include<iomanip>
#include<algorithm>
#include<map>
#define ll long long
ll mod = 1e9 + 7;
ll a[10010];
ll dp[1020][1020];
void init() /*初始化排列组合*/
{ 
    dp[0][0] = 1; 
    for (int i = 1; i <= 1010; i++) 
    { 
        dp[i][i] = dp[i][0] = 1;        
        for (int j = 1; j < i; j++) 
            dp[i][j] = (dp[i - 1][j] + dp[i - 1][j - 1]) % mod; 
    } 
}
int main()
{    
    init();
    int k;
    cin >> k;
    ll sum = 0;
    for (int i = 0; i < k; i++)
    {
        cin >> a[i];
        sum += a[i];
    }
    ll ans = 1;
    for (int i = k - 1; i >= 0; i--)
    {
        ans *= dp[sum - 1][a[i] - 1];
        ans %= mod;
        sum -= a[i];
    }
    cout << ans << endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

浅梦曾倾

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值