【AVL树】图解四种旋转/递归求树高/插入节点调整AVL树C语言实现

本文详细介绍了AVL树在四种不平衡情况下的调整方法:LL、RR、LR和RL。通过具体的旋转步骤和代码实现,深入理解如何维持AVL树的平衡特性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

不平衡的二叉树四种类型:
在这里插入图片描述
对应的四种调整方式:
在这里插入图片描述
LL:LL失去平衡的情况下,可以通过一次旋转让AVL树恢复平衡。步骤如下:

1.将根节点的左孩子作为新根节点。
2.将新根节点的右孩子作为原根节点的左孩子。
3.将原根节点作为新根节点的右孩子。
在这里插入图片描述
RR:RR失去平衡的情况下,旋转方法与LL旋转对称,步骤如下:

1.将根节点的右孩子作为新根节点。
2.将新根节点的左孩子作为原根节点的右孩子。
3.将原根节点作为新根节点的左孩子。
在这里插入图片描述
LR:LR失去平衡的情况下,需要进行两次旋转,步骤如下:

1.对根节点的左孩子进行RR旋转。注意,这一步是为后一步做准备,并不是此时根结点的左孩子失去平衡。
2.对根节点进行LL旋转。
在这里插入图片描述
RL:RL失去平衡的情况下也需要进行两次旋转,旋转方法与LR旋转对称,步骤如下:

1.对根节点的右孩子进行LL旋转。注意,这一步是为后一步做准备,并不是此时根结点的右孩子失去平衡。
2.对根节点进行RR旋转。

代码如下

#include<stdio.h>
typedef int ElementType;
typedef struct AVLNode *Position;
typedef Position AVLTree; /* AVL树类型 */
struct AVLNode{
    ElementType Data; /* 结点数据 */
    AVLTree Left;     /* 指向左子树 */
    AVLTree Right;    /* 指向右子树 */
    int Height;       /* 树高 */
};
 
int Max ( int a, int b )
{
    return a > b ? a : b;
}
 /*************************************/
/*              左单旋                */
/*************************************/
AVLTree SingleLeftRotation ( AVLTree A )
{ /* 注意:A必须有一个左子结点B */
  /* 将A与B做左单旋,更新A与B的高度,返回新的根结点B */     
 
    AVLTree B = A->Left;
    A->Left = B->Right;
    B->Right = A;
    A->Height = Max( GetHeight(A->Left), GetHeight(A->Right) ) + 1;
    B->Height = Max( GetHeight(B->Left), A->Height ) + 1;
  
    return B;
}
/*************************************/
/*              右单旋                */
/*************************************/
AVLTree SingleRightRotation ( AVLTree A )
{ /* 注意:A必须有一个右子结点B */
  /* 将A与B做右单旋,更新A与B的高度,返回新的根结点B */     
 
    AVLTree B = A->Right;
    A->Right = B->Left;
    B->Left = A;
    A->Height = Max( GetHeight(A->Left), GetHeight(A->Right) ) + 1;
    B->Height = Max( GetHeight(B->Left), A->Height ) + 1;
  
    return B;
}
/*************************************/
/*            左右双旋(LR)            */
/*************************************/
 
AVLTree DoubleLeftRightRotation ( AVLTree A )
{ /* 注意:A必须有一个左子结点B,且B必须有一个右子结点C */
  /* 将A、B与C做两次单旋,返回新的根结点C */
     
    /* 将B与C做右单旋,C被返回 */
    A->Left = SingleRightRotation(A->Left);
    /* 将A与C做左单旋,C被返回 */
    return SingleLeftRotation(A);
}
/*************************************/
/*            右左双旋(RL)            */
/*************************************/
AVLTree DoubleRightLeftRotation ( AVLTree A )
{ /* 注意:A必须有一个右子结点B,且B必须有一个左子结点C */
  /* 将A、B与C做两次单旋,返回新的根结点C */
     
    /* 将B与C做左单旋,C被返回 */
    A->Right = SingleLeftRotation(A->Right);
    /* 将A与C做右单旋,C被返回 */
    return SingleRightRotation(A);
}
/*************************************/
/*向AVL树中插入结点,并返回调整后的AVL树 */
/*************************************/
 
AVLTree Insert( AVLTree T, ElementType X )
{ /* 将X插入AVL树T中,并且返回调整后的AVL树 */
    if ( !T ) { /* 若插入空树,则新建包含一个结点的树 */
        T = (AVLTree)malloc(sizeof(struct AVLNode));
        T->Data = X;
        T->Height = 0;
        T->Left = T->Right = NULL;
    } /* if (插入空树) 结束 */
 
    else if ( X < T->Data ) {
        /* 插入T的左子树 */
        T->Left = Insert( T->Left, X);
        /* 如果需要左旋 */
        if ( GetHeight(T->Left)-GetHeight(T->Right) == 2 )
            if ( X < T->Left->Data ) 
               T = SingleLeftRotation(T);      /* 左单旋 */
            else 
               T = DoubleLeftRightRotation(T); /* 左-右双旋 */
    } /* else if (插入左子树) 结束 */
     
    else if ( X > T->Data ) {
        /* 插入T的右子树 */
        T->Right = Insert( T->Right, X );
        /* 如果需要右旋 */
        if ( GetHeight(T->Left)-GetHeight(T->Right) == -2 )
            if ( X > T->Right->Data ) 
               T = SingleRightRotation(T);     /* 右单旋 */
            else 
               T = DoubleRightLeftRotation(T); /* 右-左双旋 */
    } /* else if (插入右子树) 结束 */
 
    /* else X == T->Data,无须插入 */
 
    /* 别忘了更新树高 */
    T->Height = Max( GetHeight(T->Left), GetHeight(T->Right) ) + 1;
     
    return T;
}
/*************************************/
/*              求树高                */
/*************************************/
int GetHeight( AVLTree BT )
{
    int result=0;
    int left=0,right=0;

    if(BT)
       return Max( GetHeight(BT->Left),GetHeight(BT->Right))+1;
    else
      return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值