注:机翻,未校。
The Completion of the Emergence of Modern Logic from Boole’s The Mathematical Analysis of Logic to Frege’s Begriffsschrift
Abstract
摘要
Modern logic begins with Boole’s The Mathematical Analysis of Logic when the algebra of logic was developed so that classical logic syllogisms were proven as algebraic equations and the turn from the logic of classes to propositional logic was suggested. The emergence was incomplete as Boole algebraised classical logic. Frege in Begriffsschrift replaced Aristotelian subject–predicate propositions by function and argument and displaced syllogisms with an axiomatic propositional calculus using conditionals, modus ponens and the law of substitution. Further Frege provided the breakthrough to lay down the groundwork for the development of quantified logic as well as the logic of relations. He achieved all of this through his innovative formal notations which have remained underrated. Frege hence completed the emergence of modern logic. Both Boole and Frege mathematised logic, but Frege’s goal was to logicise mathematics. However the emergence of modern logic in Frege should be detached from his logicism.
现代逻辑始于布尔的《逻辑的数学分析》,当时逻辑代数得以发展,使得古典逻辑三段论得以作为代数方程式被证明,并且从类逻辑向命题逻辑的转变被提出。由于布尔只是对古典逻辑进行代数化,因此这一转变尚未完成。弗雷格在《概念文字》中用函数和参数取代了亚里士多德式的主谓命题,并用条件句、演绎法和代入律构建了公理化的命题演算,从而取代了三段论。此外,弗雷格还为量化逻辑和关系逻辑的发展奠定了基础。他通过创新的符号形式实现了这一切,而这些符号形式至今仍未得到足够的重视。弗雷格因此完成了现代逻辑的形成。布尔和弗雷格都使逻辑数学化,但弗雷格的目标是使数学逻辑化。然而,弗雷格对现代逻辑的贡献应与其逻辑主义相区分。
1. Introduction
1. 引言
Can we pinpoint the moment when modern logic emerged? I propose that the emergence occurs in 1847 in Boole’s The Mathematical Analysis of Logic and in 1879 in Frege’s Begriffsschrift. However this is to be complemented by the metalogic developed by Hilbert. Boole mathematised logic; whereas Frege raised logic to its highest pedestal by attempting to logicise mathematics and for Hilbert both logic and mathematics as a unified enterprise reached a second order level never developed before. “Modern logic” may have various meanings such as (a) a fully developed first order propositional and predicate calculus, or (b) the development of higher order logics and metalogic including the relation of semantics to proof theory. If “modern” means latest, then (b) would be more appropriate. However, if “modern” is taken in an historical sense, then (a) may be the more important meaning. “Modern philosophy” is taken to begin with Descartes in the 17th century. In this historical sense “Modern” is a break from medieval philosophy. “Modern philosophy” includes the span of philosophers from Descartes to the 21st century. No crucial break from classical logic occurred in the 17th or 18th centuries, hence we mark the 19th century as when modern logic emerged. Just as we say that Modern philosophy begins with Descartes, I want to claim that modern logic begins with Boole and Frege. Hence, under “modern logic” I include not only (a) and (b) but also the more recent developments such as modal logic, epistemic logic, deontic logic, quantum logic, multivalued logic, fuzzy logic and paraconsistent logic. However, I use “emergence” as being restricted to (a). Just as the emergence of Modern philosophy in Descartes does not include Kant’s critical philosophy, similarly, the emergence of modern logic does not include (b) and later developments. Nonetheless just as Descartes is a necessary antecedent for Kant’s critical philosophy, so (a) is a necessary antecedent for (b). Second order and higher order logics would not have emerged without the initial emergence of first order axiomatic propositional and predicate logic.
我们能否确定现代逻辑出现的那一刻?我认为,现代逻辑的出现发生在 1847 年布尔的《逻辑的数学分析》以及 1879 年弗雷格的《概念文字》中。然而,这需要补充希尔伯特发展的元逻辑。布尔使逻辑数学化;而弗雷格则通过尝试使数学逻辑化,将逻辑提升到了最高的地位,对于希尔伯特来说,逻辑与数学作为统一的事业达到了前所未有的第二层次。“现代逻辑”可能有多种含义,例如 (a) 完全发展的第一阶命题和谓词演算,或 (b) 包括语义与证明论关系的高阶逻辑和元逻辑的发展。如果“现代”意味着最新的,那么 (b) 更为合适。然而,如果从历史意义来看,“现代”则 (a) 更为重要。“现代哲学”被认为始于 17 世纪的笛卡尔。从这个历史意义上说,“现代”是对中世纪哲学的突破。“现代哲学”包括从笛卡尔到 21 世纪的哲学家。由于 17 世纪或 18 世纪并没有与古典逻辑的关键性断裂,因此我们将 19 世纪视为现代逻辑出现的时期。正如我们说现代哲学始于笛卡尔,我也想声称现代逻辑始于布尔和弗雷格。因此,在“现代逻辑”下,我不仅包括 (a) 和 (b),还包括更近的发展,如模态逻辑、认知逻辑、道义逻辑、量子逻辑、多值逻辑、模糊逻辑和不一致容忍逻辑。然而,我将“出现”限制为 (a)。正如笛卡尔的现代哲学不包括康德的批判哲学一样,现代逻辑的出现也不包括 (b) 和后来的发展。尽管如此,正如笛卡尔是康德批判哲学的必要前提一样,(a) 也是 (b) 的必要前提。如果没有第一阶公理化命题和谓词逻辑的最初出现,二阶和高阶逻辑就不会出现。
2. The Beginning of Modern Logic in Boole’s The Mathematical Analysis of Logic
2. 布尔的《逻辑的数学分析》与现代逻辑的开端
Symbolic propositional and predicate calculus could not be developed because neither Aristotle nor any logician after Aristotle was able to mathematise logic. Leibniz anticipated the algebra of logic to be the art of combinations as Louis Couturat states: Leibniz had conceived the idea […] of all the operations of logic, […] was acquainted with the fundamental relations of the two copulas […] found the correct algebraic translation of the four classical propositions, […] discovered the principal laws of the logical calculus, […] he possessed almost all the principles of the logic of Boole and Schröder, and on certain points he was more advanced than Boole himself. (my translation) [6, pp. 385–6]
What Leibniz really needed was the development of symbolical algebra which occurred more than a century after his death. In 1830 George Peacock claimed that operations in symbolic algebra must be open to interpretations other than that in arithmetic: […] in framing the definitions of algebraical operations, […] we must necessarily omit every condition which is in any way connected with their specific value or representation: […] the definitions of some operations must regard the laws of their combination only […] in order that such operations may possess an invariable meaning and character, […] [7, pp. viii–x] The primacy of combinations over what they combine is thereby established. Boole developed a quantity free algebra of logic in Mathematical Analysis of Logic. He began by laying down the foundations of the algebra of logic which is a logic of classes in which the three combinatory laws (1) x ( y + z ) = x y + x z x(y + z) = xy + xz x(y+z)=xy+xz (distributive), (2) x y = y x xy = yx xy=yx (commutative) and (3) x 2 = x x^2 = x x2=x (index) (p. 15); when combined with the axiom that equivalent operations performed on equivalent subjects, produce equivalent results, constitute the axiomatic foundations for all of logic [1, p. 18]. First, Boole represents Aristotelian categorical propositions as algebraic equations. Then, he captures valid syllogisms of classical logic by multiplying equations and eliminating y y y which represents the traditional middle term: a y + b = 0 ay + b = 0 ay+b=0 a ′ y + b ′ = 0 a′ y + b′ = 0 a′y+b′=0 When y y y is eliminated this reduces to: a b ′– a ′ b = 0 ab′ – a′b = 0 ab′–a′b=0 [1, p. 32] Boole then makes the crucial turn to propositional logic in his account of conditionals. First he presents conditionals in terms of classes as in syllogistic logic: If A is B, then C is D, But A is B, therefore, C is D. But then he expresses it in terms of propositions without reference to classes: If X is true, then Y is true, But X is true, therefore, Y is true. […] Thus, what we have to consider is not objects and classes of objects, but the truths of Propositions, namely, of those elementary Propositions which are embodied in the terms of our hypothetical premises [1, pp. 48–9]. We can embalm page 48 as the long awaited turning point from classical to modern logic as a scheme to translate syllogisms into inferences involving conditionals is suggested and in the particular example, the rule of inference of modus ponens is given in its propositional conditional form as we know it today. Using 0 for false and 1 for true Boole now comes up with the possibilities for truth tables [1, pp. 50–51] and goes on to define conjunction, disjunction (both exclusive and inclusive), and conditional truth functionally [1, pp. 52–4]. As truth values are algebraised, mathematics can provide important insights into logic. These equations can be used for understanding truth functionality in a way that may not be understood without mathematics. The equation for the exclusive disjunction “Either x is true or y is true” is x – 2 x y + y = 1 x – 2xy + y = 1 x–2xy+y=1, which is acquired from the second and third row of the truth table: x ( 1 – y ) + y ( 1 – x ) = x – x y + y – x y = x – 2 x y + y x(1 – y) + y(1 – x) = x – xy + y – xy = x – 2xy + y x(1–y)+y(1–x)=x–xy+y–xy=x–2xy+y, and this must be true, so x – 2 x y + y = 1 x – 2xy + y = 1 x–2xy+y=1. Now, since x 2 = x x^2 = x x2=x, we get: x 2 – 2 x y + y 2 = 1 x^2 – 2xy + y^2 = 1 x2–2xy+y2=1. Which reduces to ( x – y ) 2 = 1 (x – y)^2 = 1 (x–y)2=1; x – y = ± 1 x – y = ± 1 x–y=±1. When x x x is true having the value of 1, then y y y must be false having the value 0 and when x x x is false, having the value 0, then y y y is true, having the value 1 to satisfy the equation [1, p. 55]. Hence, we see from the inside of Boolean algebra how a simple algebraic operation, but without regard to quantity, as the rule x 2 = x x^2 = x x2=x is not a rule of ordinary algebra, leads to a clear definition of a logical operation like exclusive disjunction. Boole concludes: “The general doctrine of elective symbols and all the more characteristic applications are quite independent of any quantitative origin” [1, p. 82]. Boole successfully developed the algebra of logic on the basis of symbolical algebra that divests itself of quantitative origin. However, Aristotelian logic was sustained as is clear by the title “Aristotelian Logic and its Modern Extensions, Examined by the Method of this Treatise” of the culminating chapter of the logic part of his major work Laws of Thought in 1854. [8, pp. 174–86]. Clearly then, modern logic had not yet emerged in 1847 or in 1854.
符号命题和谓词演算之所以未能发展,是因为亚里士多德以及亚里士多德之后的任何逻辑学家都未能使逻辑数学化。路易·库图拉指出,莱布尼茨曾预见到逻辑代数将是组合的艺术:莱布尼茨曾构想出……所有逻辑运算的观念,……熟悉两个系词的基本关系……找到了四个经典命题的正确代数翻译,……发现了逻辑演算的主要法则,……他几乎拥有了布尔和施罗德逻辑的所有原则,在某些方面他甚至比布尔本人更为先进。(我的翻译)[6, 第 385–386 页]
莱布尼茨真正需要的是符号代数的发展,而这一发展在他去世后的一个多世纪才出现。1830 年,乔治·皮科克声称,符号代数中的运算必须对算术中的解释保持开放:……在制定代数运算的定义时,……我们必须必然省略所有与它们的具体值或表示方式有关的条件:……某些运算的定义必须只考虑它们的组合法则……以便这些运算能够具有一成不变的意义和特征,……[7, 第 viii–x 页] 由此确立了组合优于被组合对象的优先性。布尔在《逻辑的数学分析》中发展了一种没有数量的逻辑代数。他首先奠定了逻辑代数的基础,这是一种类逻辑,其中的三条组合定律是:(1) x ( y + z ) = x y + x z x(y + z) = xy + xz x(y+z)=xy+xz(分配律)、(2) x y = y x xy = yx xy=yx(交换律)和(3) x 2 = x x^2 = x x2=x(指数律)(第 15 页);当这些定律与等价操作在等价主体上产生等价结果的公理结合起来时,就构成了整个逻辑的公理基础 [1, 第 18 页]。首先,布尔将亚里士多德的分类命题表示为代数方程。然后,他通过乘法方程并消去代表传统中项的 y y y 来捕捉经典逻辑的有效三段论: a y + b = 0 ay + b = 0 ay+b=0 a ′ y + b ′ = 0 a′ y + b′ = 0 a′y+b′=0 当 y y y 被消去时,这简化为: a b ′– a ′ b = 0 ab′ – a′b = 0 ab′–a′b=0 [1, 第 32 页]。布尔随后在讨论条件句时转向了命题逻辑的关键转折点。他首先用类来表示条件句,就像在三段论逻辑中一样:如果 A 是 B,那么 C 是 D,但 A 是 B,因此,C 是 D。但随后他用命题来表示,而不涉及类:如果 X 为真,那么 Y 为真,但 X 为真,因此,Y 为真。……因此,我们需要考虑的不是对象和对象的类,而是命题的真实性,即那些体现在我们假设前提中的基本命题的真实性 [1, 第 48–49 页]。我们可以将第 48 页视为从古典逻辑到现代逻辑的转折点,因为这里提出了一个将三段论转化为涉及条件句的推理的方案,而在特定例子中,演绎法的推理规则以我们今天所熟知的命题条件形式被给出。布尔用 0 表示假,用 1 表示真,随后提出了真值表的可能性 [1, 第 50–51 页],并继续从功能上定义合取、析取(包括排他性和包容性)和条件真值 [1, 第 52–54 页]。随着真值被代数化,数学可以为逻辑提供重要的见解。这些方程式可以用来理解真值功能,而这种理解在没有数学的情况下可能无法实现。排他性析取“要么 x 为真,要么 y 为真”的方程式是 x – 2 x y + y = 1 x – 2xy + y = 1 x–2xy+y=1,这是从真值表的第二行和第三行得出的: x ( 1 – y ) + y ( 1 – x ) = x – x y + y – x y = x – 2 x y + y x(1 – y) + y(1 – x) = x – xy + y – xy = x – 2xy + y x(1–y)+y(1–x)=x–xy+y–xy=x–2xy+y,这必须为真,因此 x – 2 x y + y = 1 x – 2xy + y = 1 x–2xy+y=1。由于 x 2 = x x^2 = x x2=x,我们得到: x 2 – 2 x y + y 2 = 1 x^2 – 2xy + y^2 = 1 x2–2xy+y2=1。这简化为 ( x – y ) 2 = 1 (x – y)^2 = 1 (x–y)2=1; x – y = ± 1 x – y = ± 1 x–y=±1。当 x x x 为真,值为 1 时, y y y 必须为假,值为 0;当 x x x 为假,值为 0 时, y y y 为真,值为 1,以满足方程 [1, 第 55 页]。因此,我们从布尔代数的内部看到,一个简单的代数运算,但不考虑数量,因为规则 x 2 = x x^2 = x x2=x 不是普通代数的规则,导致了像排他性析取这样的逻辑运算的清晰定义。布尔总结道:“选择符号的一般教义以及所有更具特征性的应用都完全独立于任何定量起源” [1, 第 82 页]。布尔成功地在符号代数的基础上发展了逻辑代数,这种代数摆脱了定量起源。然而,亚里士多德的逻辑得以延续,这从他 1854 年的主要著作《思维规律》的逻辑部分的最后一章标题“用本著作的方法考察亚里士多德逻辑及其现代扩展”中可以看出 [8, 第 174–186 页]。显然,现代逻辑在 1847 年或 1854 年尚未出现。
3. The Completion of the Emergence of Modern Logic in Frege’s Begriffsschrift
3. 弗雷格的《概念文字》与现代逻辑的最终形成
Frege completed the emergence of modern logic: first, by his innovative notation for judgments where the content stroke represented the content of the judgment, he finally brought down the axe on subject–predicate propositions which Boole was unable to do; second, he introduced a formal notation for conditional statements which in turn led to the development of axiomatic logic as well as a rigorous proof technique using modus ponens that made Aristotelian syllogisms archaic; third, he introduced a perspicuous notation for the universal quantifier so that a predicate as well as propositional calculus could be developed; fourth, he imported from mathematics the notions of function and argument and placed them at the core of symbolic logic and there was no looking back. Frege made up for Leibniz’s failure to develop modern logic due to a lack of formalisation of relations and modern logic finally emerged. By no means was Frege a lone ranger in the emergence and development of modern logic. Invaluable contributions, without which Frege would have been nowhere, were made by DeMorgan, Schröder, Peirce and others. Yet Frege perhaps put it all together better than anyone else. The master historians of logic, Kneale and Kneale, best capture Frege’s contribution: Frege’s Begriffsschrift is the first really comprehensive system of formal logic. Aristotle was interested chiefly in certain common varieties of general propositions. He did indeed formulate the principles of non-contradiction and excluded middle, which belong to a part of logic more fundamental than his theory of the syllogism; but he failed to recognize the need for a systematic account of primary logic. Such an account was supplied, at least in part, by Chrysippus; but neither he nor the medieval logicians who wrote about consequentiae succeeded in showing clearly the relation between primary and general logic. Leibniz and Boole, recognizing a parallelism between primary logic and certain propositions of general logic about attributes or classes, worked out in abstract fashion a calculus that seemed to cover both; but neither of these enlarged the traditional conception of logic to include the theory of relations. Working on some suggestions of De Morgan, Peirce explored this new field, and shortly after the publication of the Begriffsschrift he even produced independently a doctrine of functions with a notation adequate for expressing all the principles formulated by Frege; but he never reduced his thoughts to a system or set out a number of basic principles like those given in the last section. Frege’s work, on the other hand, contains all the essentials of modern logic, and it is not unfair either to his predecessors or to his successors to say that 1879 is the most important date in the history of the subject. [9, pp. 510–11] Others have also expressed highest praises for the Begriffsschrift. von Heijenoort says “Modern logic began in 1879, the year in which Gottlob Frege (1848–1925) published his Begriffsschrift” [10, p. 242]. According to Haaparanta “Still others argue that the beginning of modern logic was 1879, when Frege’s Begriffsschrift appeared” [11, p. 5]. Christian Thiel states “If Frege has been regarded as the founder of modern mathematical logic, this characterization refers to his creation of classical quantificational logic in his Begriffsschrift of 1879 without any predecessor” [12, p. 197]. I now proceed to capture Frege’s contributions in the Begriffsschrift. The Preface announces Frege’s motivation as he believes that pure logic gives the most reliable proof, and this depends solely on those laws on which all knowledge rests. Aristotle felt that his greatest achievement in logic was the discovery of the laws of thought. Boole appropriately entitled his later book as An Investigation into the Laws of Thought. There is a remarkable structural affinity among Aristotle, Boole and Frege, yet they are the greatest revolutionaries in logic. Frege, as a philosopher, made explicit what Boole as a mathematician left only as implicit. Boole algebraised logic by importing symbolical algebra into logic but at the same time, he set up formal logic that could become the basis of algebra as well. In attempting to logicise arithmetic, that is, to make it bereft of facts, and thereby content, Frege wanted to express arithmetical sequences by representing the ordering of a sequence without bringing in intuition and the existing mathematical language made this a very difficult task. Hence, he created his own formula language, the central nerve of which is conceptual content (begrifflichen inhalt) [2, pp. iii–iv; 3, pp. 5–6]2. This formula language is modelled after the formula language of arithmetic, yet it is the “formula language for pure thought” including arithmetic. Frege next announces that argument and function replaces subject and predicate of traditional logic and this will stand the test of time [2, p. vii; 3, p. 7]. And indeed it has stood the test of time. The Preface ends: As I remarked at the beginning, arithmetic was the point of departure for the train of thought that led me to my ideography. And that is why I intend to apply it first of all to that science, attempting to provide a more detailed analysis of the concepts of arithmetic and a deeper foundation for its theorems. [2, p. viii; 3, p. 8] This is a profound insight that arithmetic is begging for someone to build logic out of its language so that it (the new logic) can provide a sounder foundation for arithmetic itself. Part I is “I. DEFINITION OF THE SYMBOLS”. In #1 Frege begins with the distinction between two types of signs; letters, like a, b, c, etc., that represent variability in meaning and symbols like +, -, √, and 1, 2, 3, which have determinate meaning: “I adopt this basic idea of distinguishing two types of signs, which unfortunately is not strictly observed in the theory of magnitudes, in order to apply it in the more comprehensive domain of pure thought in general” [2, p. 1; 3, pp. 10–11]. Frege steals an important distinction from under the noses of mathematicians, which the mathematicians do not clearly see, and builds on it the new logic. #2 introduces “││––––––” for expressing judgments. The horizontal stroke is the content stroke representing the thought of the proposition and the vertical stroke is the judgment stroke [2, pp. 1–2; 3, pp. 11–12]. #3 begins: “Eine Unterscheidung von Subject und Prädikat findet bei meiner Darstellung eines Urteils nicht statt” [2, pp. 2–3]. {“The distinction between subject and predicate does not occur in my way of representing a judgment” [3, p. 12]}. This marks the death of Aristotelian logic and the emergence of modern logic. “––––––A” does not represent a subject–predicate proposition such as (1) “Archimedes perished at the capture of Syracuse” but it represents the conceptual content of it, which is equally captured by a distinct subject–predicate proposition such as (2) “The capture of Syracuse led to the death of Archimedes” or (3) “The violent death of Archimedes at the capture of Syracuse is a fact”. As in (3) all judgments may be thought of as having a propositional content as the subject and “is a fact” as the common predicate that makes them true [2, pp. 2–3; 3, pp. 12–13]. In #4 many distinctions of classical logic are dissolved such as that between universal and particular judgments which is now the distinction between universal and particular content and not of categorically different propositions. Negation is an adjunct to the content so that negative judgments are not categorically different from positive ones. Boole represented the four Aristotelian categorical propositions as algebraic equations hence dissolving the categorical distinction between particular and universal on the one hand and negative and affirmative on the other, since as algebraic equations they are not categorically distinct. Frege builds on this accomplishment; since, from this point on, there is no need to deal with Aristotelian categorical propositions [2, pp. 4–5; 3, p. 13]. #5 introduces the notation for conditional judgments as:
弗雷格完成了现代逻辑的出现:首先,他通过创新的判断符号(其中内容线表示判断的内容),终于砍倒了布尔未能砍倒的主谓命题;其次,他引入了条件陈述的形式符号,这反过来导致了公理逻辑的发展以及使用演绎法的严格证明技术,使得亚里士多德的三段论变得过时;第三,他引入了全称量词的清晰符号,以便发展谓词和命题演算;第四,他从数学中引入了函数和参数的概念,并将其置于符号逻辑的核心,从此一往无前。弗雷格弥补了莱布尼茨因缺乏关系的形式化而未能发展现代逻辑的遗憾,现代逻辑终于出现。弗雷格绝非孤军奋战。德摩根、施罗德、皮尔斯等人的贡献是无价的,没有他们,弗雷格将一事无成。然而,弗雷格或许比任何人都更好地将这些成果整合在一起。逻辑学的大师级历史学家肯尼尔夫妇对弗雷格的贡献做了最好的总结:弗雷格的《概念文字》是第一个真正全面的形式逻辑系统。亚里士多德主要关注某些常见的普遍命题。他确实提出了不矛盾律和排中律,这些属于比他的三段论理论更根本的逻辑部分;但他未能认识到对初等逻辑进行系统阐述的必要性。这种阐述至少部分由克吕西普提供;但他以及撰写关于推论的中世纪逻辑学家都未能清楚地表明初等逻辑与普遍逻辑之间的关系。莱布尼茨和布尔认识到初等逻辑与关于属性或类的某些普遍逻辑命题之间存在平行关系,他们以抽象的方式推导出一种似乎涵盖两者的演算;但这二者都没有扩大传统的逻辑观念以包括关系理论。在德摩根的建议基础上,皮尔斯探索了这一新领域,并且在《概念文字》出版后不久,他甚至独立地提出了一个函数学说,其符号足以表达弗雷格所阐述的所有原则;但他从未将自己的思想简化为一个系统,也没有像最后一节中给出的那样列出一系列基本原则。弗雷格的工作则包含了现代逻辑的所有要素,说 1879 年是该学科历史上最重要的日期,这对他的前人和后人都是公平的。[9, 第 510–511 页] 其他人也对《概念文字》赞誉有加。冯·海耶诺特说:“现代逻辑始于 1879 年,这一年,弗雷格(1848–1925)出版了他的《概念文字》”[10, 第 242 页]。根据哈帕兰塔的说法:“还有人认为,现代逻辑始于 1879 年,当时弗雷格的《概念文字》问世”[11, 第 5 页]。克里斯蒂安·蒂尔指出:“如果弗雷格被认为是现代数理逻辑的创始人,那么这种说法指的是他在 1879 年的《概念文字》中创造了古典量化逻辑,而此前并无先例”[12, 第 197 页]。我接下来将阐述弗雷格在《概念文字》中的贡献。序言中宣布了弗雷格的动机,因为他认为纯粹逻辑提供了最可靠的证明,而这完全依赖于所有知识赖以存在的规律。亚里士多德认为他在逻辑方面最伟大的成就是发现了思维规律。布尔恰如其分地将他后来的书命名为《思维规律研究》。亚里士多德、布尔和弗雷格之间存在着显著的结构亲和性,然而他们却是逻辑学中最伟大的革命者。作为哲学家,弗雷格明确阐述了布尔作为数学家仅隐含的内容。布尔通过引入符号代数来代数化逻辑,但同时,他也建立了一种形式逻辑,这种逻辑可以成为代数的基础。在尝试逻辑化算术时,即让算术脱离事实,从而脱离内容,弗雷格希望用一种不引入直觉的序列顺序来表达算术序列,而现有的数学语言使这一任务变得非常困难。因此,他创造了他自己的公式语言,其核心是概念内容(概念性内容)[2, 第 iii–iv 页;3, 第 5–6 页]。这种公式语言是仿照算术的公式语言构建的,但它是一种“纯粹思想的公式语言”,包括算术。弗雷格接着宣布,参数和函数取代了传统逻辑中的主语和谓语,并且这将经受住时间的考验 [2, 第 vii 页;3, 第 7 页]。事实证明确实如此。序言最后指出:正如我在开头所说,算术是我思想的出发点,它引导我走向了我的意符学。这就是为什么我打算首先将其应用于这门科学,试图对算术的概念进行更详细的分析,并为其定理提供更深入的基础 [2, 第 viii 页;3, 第 8 页]。这是一个深刻的洞见,即算术迫切需要有人用它的语言来构建逻辑,以便(这种新逻辑)为算术本身提供更可靠的基础。第一部分是“一、符号的定义”。在第 1 节中,弗雷格首先区分了两种符号:字母,如 a、b、c 等,表示意义的变化;符号,如 +、-、√ 和 1、2、3,具有确定的意义:“我采纳了这种区分两种符号的基本观点,遗憾的是,这种观点在量的理论中并未得到严格遵守,我打算将其应用于更广泛的纯粹思想领域”[2, 第 1 页;3, 第 10–11 页]。弗雷格从数学家们的眼皮底下窃取了一个重要的区别,而数学家们并没有清楚地看到这一点,并在此基础上构建了新的逻辑。第 2 节引入了“││––––––”来表达判断。水平线是内容线,表示命题的思想,垂直线是判断线 [2, 第 1–2 页;3, 第 11–12 页]。第 3 节开始:“在我的判断表达方式中,不存在主语和谓语的区别”[2, 第 2–3 页]。{“在我的判断表达方式中,不存在主语和谓语的区别”[3, 第 12 页]}。这标志着亚里士多德逻辑的终结和现代逻辑的出现。“––––––A”并不代表像“阿基米德死于叙拉古被占领”这样的主谓命题,而是代表其概念内容,这种内容同样可以被一个不同的主谓命题所捕捉,例如“叙拉古被占领导致阿基米德之死”或“阿基米德在叙拉古被占领时的暴力死亡是一个事实”。正如在(3)中,所有判断都可以被视为以命题内容为主体,“是一个事实”为共同谓语,使它们成为真判断 [2, 第 2–3 页;3, 第 12–13 页]。在第 4 节中,古典逻辑中的许多区别被消解,例如全称判断与特称判断的区别现在是全称内容与特称内容的区别,而不是范畴上不同的命题。否定是内容的附属,因此否定判断与肯定判断在范畴上并无不同。布尔将四个亚里士多德分类命题表示为代数方程,从而消解了特称与全称、否定与肯定之间的范畴区别,因为作为代数方程,它们在范畴上并无不同。弗雷格在此基础上进行了扩展;因为从这一点开始,不再需要处理亚里士多德的分类命题 [2, 第 4–5 页;3, 第 13 页]。第 5 节引入了条件判断的符号表示:
4. Conclusion
4. 结论
Mathematics and philosophy are the proper parents of logic as both are second order disciplines dealing with pure form without content and unlike the sciences they are not directly about the world. Adamson states: “The distinction of logic from the sciences, as dealing in the abstract with that which is concretely exemplified in each of them, […]” [24, p. 9]. Hence, the biggest names in the origins, emergence and development of formal logic and the roots and emergence of modern symbolic logic are of philosophers like Aristotle, Leibniz, Peirce, Frege, Russell and C. I. Lewis; and mathematicians like Boole, DeMorgan, Schröder and Hilbert. I have pinpointed the emergence of modern logic from Boole’s Mathematical Analysis of Logic to Frege’s Begriffsschrift. The emergence of modern logic begins with Boole’s book where logic was algebraised, and particularly on page 48 where the transition from the Aristotelian logic of classes to propositional calculus is strongly suggested. In Frege’s book we find the near completion of the emergence with his innovative notation of the judgment and content strokes that allows us to replace subject–predicate propositions of classical logic [2, pp. 1–3]; of providing a notational representation of the conditional along with a truth functional definition to be read out with the picture of the notation [2, p. 5]; of replacing subject–predicate propositions by function and argument [2, p. 16, 18]; of the symbolic representation of the universal quantifier (p. 19); and the technique of proving theorems by using axioms, the sole inference rule of modus ponens, and the rule of substitution [2, p. 30]. The completion of the emergence of modern logic came with the development of metamathematics and metalogic in which the soundness, consistency and completeness of axiomatic propositional as well as predicate logic can be proven. I have argued that the emergence of modern logic in Boole is partial as he ends up algebraising Aristotelian syllogisms. Frege lays the grounds for the completion of the emergence as the classical pillar of subject–predicate propositions is replaced by functions and arguments, and that of syllogisms is replaced by axioms and axiomatic proofs. By making Aristotelian logic archaic and replacing it with symbolic axiomatic logic Frege completed the task that Boole began and for all intents and purposes from 1847 to 1879 modern logic finally emerged. I say “finally” because whereas modern science and modern philosophy are usually marked as having emerged in the 17th century and modern mathematics in the 18th century, modern logic did not emerge until the 19th century. Whereas Boole algebraised logic borrowing from mathematics, specifically from symbolical algebra, the idea of combinations without regard to content; Frege borrowed from mathematics the notions of function and argument, but his real intention was to logicise arithmetic once modern logic itself had emerged. Some would argue that the completion did not take place until the beginning of the 20th century until Russell and Whitehead’s Principia Mathematica and Hilbert’s metalogic. I would label these as “the development of modern logic” rather than the “emergence of modern logic”. However, I will not push this distinction here within the scope of this paper and will concede to those who want to include these latter contributions as part and parcel of the emergence of modern logic. Frege’s contribution can best be assessed by highlighting an important distinction as stated by Jourdain: […] the distinction pointed out by Leibniz between a calculus ratiocinator and a […] lingua characteristica. […] The objects of a complete logical symbolism are: firstly, […] providing an ideography, in which the signs represent ideas and the relations between them directly […], and secondly, […], from given premises, we can, in this ideography, draw all the logical conclusions which they imply by means of rules of transformation of formulas analogous to those of algebra,—in fact, in which we can replace reasoning by the almost mechanical process of calculation. This second requirement is the requirement of a calculus ratiocinator. It is essential that the ideography should be complete […] {and} concise. The merits of such an ideography are obvious: rigor of reasoning is ensured by the calculus character; we are sure of not introducing unintentionally any premise; and we can see exactly on what propositions any demonstration depends. We can […] characterize the dual development of the theory of symbolic logic during the last sixty years as follows: The calculus ratiocinator aspect of symbolic logic was developed by Boole, De Morgan, Jevons, Venn, C. S. Peirce, Schröder, Mrs. Ladd Franklin and others; the lingua characteristica aspect was developed by Frege, Peano and Russell. […] Frege has remarked that his own symbolism is meant to be a calculus ratiocinator as well as a lingua characteristica […] [19, pp. vii–viii). Lingua characteristica provides an ideography in which the signs represent concepts and the relations among concepts and calculus ratiocinator is the rigorous proofs from axioms in this ideography. Frege, according to the findings of this paper, is right on the mark in claiming that his symbolism is both a calculus ratiocinator and a lingua characteristica because not only do his notations capture the relations among concepts but they themselves are conceptual inventions, and the understanding of the axioms as laws of thought as well as the proving techniques are totally dependent on the notations and formulations using these notations themselves, hence Frege also provides a calculus ratiocinator. The emergence of modern logic is incomplete in Boole who provides a rigorous calculus ratiocinator by using algebra to capture logic, but fails to create a new ideography to relate concepts, but more or less accepts the old ideography of Aristotle which is not a universal lingua characteristica. Frege creates this new ideography and also provides a rigorous calculus ratiocinator for his new lingua characteristica which is more universal than Aristotle’s, hence satisfying Leibniz’s dream, as it can be used not only for all of mathematics, but for science and philosophy as well. I began the discussion of Frege with how he stole an important distinction from under the noses of mathematicians. I end here with a distinction that I steal from the mathematician Jourdain to elevate Frege to the rank of the greatest logician, whereas Frege was mostly ignored by mathematicians for about three decades after the publication of the Begriffsschrift.
数学和哲学是逻辑学的真正父母,因为它们都是处理纯粹形式而无具体内容的二级学科,与自然科学不同,它们并不直接涉及世界。亚当森指出:“逻辑学与自然科学的区别在于,逻辑学以抽象的方式处理自然科学中具体体现的内容……”[24, 第 9 页]。因此,在形式逻辑的起源、出现和发展以及现代符号逻辑的根源和出现方面,最重要的名字是哲学家,如亚里士多德、莱布尼茨、皮尔斯、弗雷格、罗素和 C. I. 刘易斯;以及数学家,如布尔、德摩根、施罗德和希尔伯特。我已经指出现代逻辑的出现是从布尔的《逻辑的数学分析》到弗雷格的《概念文字》。现代逻辑的出现始于布尔的著作,其中逻辑被代数化,尤其是在第 48 页,强烈暗示了从亚里士多德的类逻辑向命题演算的转变。在弗雷格的书中,我们发现了这种出现的近乎完成,他的创新符号——判断和内容的笔画——使我们能够取代古典逻辑的主谓命题 [2, 第 1–3 页];他提供了条件句的符号表示以及与符号图像一起读出的真值函数定义 [2, 第 5 页];他用函数和参数取代了主谓命题 [2, 第 16、18 页];他引入了全称量词的符号表示(第 19 页);以及使用公理、唯一的推理规则——演绎法和代入规则来证明定理的技术 [2, 第 30 页]。随着元数学和元逻辑的发展,现代逻辑的出现得以完成,在其中可以证明公理化命题和谓词逻辑的可靠性、一致性和完全性。我论证说,布尔对现代逻辑的贡献是不完整的,因为他最终只是代数化了亚里士多德的三段论。弗雷格为这种出现的完成奠定了基础,因为古典的主谓命题支柱被函数和参数取代,而三段论被公理和公理化证明取代。通过使亚里士多德逻辑过时,并用符号公理化逻辑取代它,弗雷格完成了布尔开始的任务,从 1847 年到 1879 年,现代逻辑终于出现了。我说“终于”,是因为现代科学和现代哲学通常被认为出现在 17 世纪,现代数学出现在 18 世纪,而现代逻辑直到 19 世纪才出现。布尔从数学中借用代数化的逻辑,特别是从符号代数中,引入了不考虑内容的组合思想;弗雷格从数学中引入了函数和参数的概念,但他真正的意图是用现代逻辑来逻辑化算术。有些人会认为,直到 20 世纪初,直到罗素和怀特海的《数学原理》和希尔伯特的元逻辑出现,这种完成才真正发生。我会将这些称为“现代逻辑的发展”,而不是“现代逻辑的出现”。然而,在本文的范围内,我不会强调这种区别,并且会同意那些希望将这些后来的贡献视为现代逻辑出现的一部分的观点。根据本文的研究,弗雷格的贡献可以通过强调莱布尼茨指出的一个重要区别来最好地评估:……莱布尼茨指出的演算器和……特征语言之间的区别……。完整的逻辑符号的对象是:首先,……提供一种意符学,在其中符号直接代表概念及其之间的关系……,其次,……在给定的前提条件下,我们可以在这种意符学中通过类似于代数的公式转换规则来推导出它们所蕴含的所有逻辑结论——事实上,我们可以通过几乎机械化的计算过程来取代推理。第二个要求是演算器的要求。这种意符学必须是完整的……{并且}简洁的。这种意符学的优点是显而易见的:推理的严谨性由演算特性所保证;我们可以确保不会无意中引入任何前提;并且我们可以清楚地看到任何证明所依赖的命题。我们可以……将过去六十年符号逻辑理论的双重发展描述如下:符号逻辑的演算器方面由布尔、德摩根、杰文斯、维恩、C. S. 皮尔斯、施罗德、拉德·弗兰克林夫人等人发展;特征语言方面由弗雷格、皮亚诺和罗素发展……。弗雷格指出,他自己的符号既是一种演算器,也是一种特征语言……[19, 第 vii–viii 页]。特征语言提供了一种意符学,在其中符号代表概念及其之间的关系,而演算器则是在这种意符学中从公理出发进行严格证明。根据本文的研究,弗雷格声称他的符号既是一种演算器,也是一种特征语言是完全正确的,因为他的符号不仅捕捉了概念之间的关系,而且它们本身就是概念上的发明,对公理作为思维规律的理解以及证明技术完全依赖于这些符号本身及其使用这些符号的公式,因此弗雷格也提供了一种演算器。现代逻辑在布尔那里是不完整的,他通过代数捕捉逻辑,提供了一种严格的演算器,但未能创造出一种新的意符学来关联概念,而或多或少接受了亚里士多德的旧意符学,这并不是一种通用的特征语言。弗雷格创造了这种新的意符学,并且为他的新特征语言提供了一种比亚里士多德更通用的严格演算器,因此实现了莱布尼茨的梦想,因为它不仅可以用于整个数学,还可以用于科学和哲学。我以弗雷格如何从数学家们的眼皮底下窃取一个重要区别开始讨论。我以从数学家乔达因那里窃取的一个区别结束,以此将弗雷格提升为最伟大的逻辑学家,尽管在《概念文字》出版后的约三十年里,弗雷格被数学家们大多忽略了。
References
-
Boole, G. (1847). The mathematical analysis of logic: Being an essay towards a calculus of deductive reasoning. Macmillan, Barclay and Macmillan, Cambridge.
-
Frege, G. (1879). BEGRIFFSSCHRIFT, EINE DER ARITHMETISCHEN NACHGEBILDETE FORMELSPRACHE DES REINEN DENKENS. Verlag von Louis Nebert, Halle.
-
Frege, G. (1879/1967). Begriffsschrift, a formula language, modeled upon that of arithmetic, for pure thought (S. Bauer-Mengelberg, Trans.). In J. van Heijenoort (Ed.), From Frege to Gödel: A source book in mathematical logic, 1879–1931 (pp. 1–82). toExcel Press, New York.
-
Jetli, P. (2010). The emergence of modern logic. Paper presented at the Third Indian School of Logic and its Applications, University of Hyderabad, India, 18 January, 2010. Available at http://ali.cmi.ac.in/isla2010/slides/jetli-lec.pdf (Note: The link may not be accessible due to network issues or the validity of the URL. Please check the link and try again if necessary.)
-
Whitehead, A. N., & Russell, B. (1910). Principia Mathematica, Volume I. Cambridge University Press, Cambridge.
-
Couturat, L. (1901). La logique de Leibniz d’après des documents inédits. Felix Alcan, Paris.
-
Peacock, G. (1830). A treatise on algebra. J. and J. J. Deighton, Cambridge.
-
Boole, G. (1854). An investigation of the laws of thought on which are founded the mathematical theories of logic and probabilities. Walton and Maberly, London.
-
Kneale, W., & Kneale, M. (1962). The development of logic. Clarendon Press, Oxford.
-
van Heijenoort, J. (1992). Historical development of modern logic. The Review of Modern Logic, 2(3), 242–255.
-
Haaparanta, L. (2009). Introduction. In L. Haaparanta (Ed.), The development of modern logic (pp. 3–10). Oxford University Press, Oxford.
-
Thiel, C. (2009). Gottlob Frege and the interplay between logic and mathematics. In L. Haaparanta (Ed.), The development of modern logic (pp. 196–202). Oxford University Press, Oxford.
-
Cavaliere, F. (1995). L’opera di Hugh MacColl alle origini delle logiche non-classiche. The Review of Modern Logic, 6(4), 373–402.
-
Euclid. (1956). The thirteen books of Euclid’s Elements, Vol. I (Sir T. L. Heath, Trans.). Dover, New York.
-
Church, A. (1956). Introduction to mathematical logic. Princeton University Press, Princeton.
-
Imai, Y., & Iséki, K. (1966). On axiom systems of propositional calculi. Proceedings of the Japan Academy, 42(1), 19–22.
-
Mendelson, E. (1964/1997). Introduction to mathematical logic (4th ed.). Chapman & Hall, New York.
-
Lewis, C. I. (1918). A survey of symbolic logic. University of California Press, Berkeley.
-
Jourdain, P. E. B. (1914). Preface. In L. Couterat, The algebra of logic (L. Gilingham Robinson, Trans.) (pp. iii–x). The Open Court Publishing Company, Chicago.
-
Green, J. (1994). The algebra of logic: What Boole really started. The Review of Modern Logic, 4(1), 48–62.
-
Sullivan, P. M. (2004). Frege’s logic. In D. M. Gabbay & J. Woods (Eds.), Handbook of the history of logic (volume 3): The rise of modern logic: From Leibniz to Frege (pp. 659–750). Elsevier, London.
-
Houser, N. (1990). Peirce’s logic today: (A report on the logic program of the Peirce Sesquicentennial Congress). The Review of Modern Logic, 1(1), 92–101.
-
Ferreirós, J. (2001). The road to modern logic: An interpretation. The Bulletin of Symbolic Logic, 7(4), 441–484.
-
Adamson, R. (1911). A brief history of logic. William Blackwood and Sons, London.
via:
- The Completion of the Emergence of Modern Logic from Boole’s The Mathematical Analysis of Logic to Frege’s Begriffsschrift | SpringerLink
https://link.springer.com/chapter/10.1007/978-3-642-18026-2_10